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    The motion of a charged particle in a dipole 

magnetic field has been a problem of widespread interest, 

with its origins rooted in the twentieth century, since the 

discovery of cosmic rays in the Earth’s magnetosphere. 

Extensive studies in the problem were carried out by 

Carl Stöermer [1], and the eponymous problem was 

found to form a non-integrable system, in particular, it 

gives a chaotic system. This problem has also been 

studied in the restricted case, where particle trajectories 

are restricted to a fixed radial distance, and the integrable 

dynamics depict periodic and non-periodic orbits [2].   

    A natural extension to this problem is to improve 

upon two key assumptions undertaken in the classical 

Stöermer problem. We first attempt to account for the 

effect of the charged particles in the magnetospheric 

plasma on the electron trajectories as an extension of the 

single particle formulation in the original problem. 

Second, we account for the collisional drag force by the 

neutral particles in the dipole plasma on the electron 

trajectories. These improvements should provide a more 

realistic understanding of particle trajectories in a 

magnetospheric plasma.  

    Presently, our system of interest is a microwave 

(2.45 GHz) generated compact dipole Argon plasma 

developed in the laboratory which uses a single 

permanent magnet (NdFeB) to generate the magnetic 

field. Extensive temperature and density measurements 

have been carried out in the dipole plasma, as well as a 

characterization of the optical emissivity [3-4], primarily 

at a neutral pressure of 0.4-2.0 mTorr, and a wave power 

of 200-300 W. To describe the particle trajectories (in the 

no-drag approximation) in this plasma, we may solve the 

following equation of motion given by the Lorentz force 

equation: 

𝑚𝑒

𝜕𝒖𝒆

𝜕𝑡
= −𝑒(𝑬 + 𝒖𝒆 × 𝑩) 

where 𝒖𝒆(𝒓, 𝑡) is the average electron velocity in the 

plasma, which lies in the non-relativistic regime. Note 

that, although the electric and magnetic field are also 

composed of contributions from that of the steady-state 

continuous mode microwaves used to generate the 

plasma, their magnitudes are several orders smaller than 

the plasma electric field or dipole magnetic field, and 

hence may be safely ignored. The electric field is 

obtained by the gradient of the space potential, whose 

profiles are reconstructed for all space from experimental 

data obtained using an emissive probe at certain radial 

and angular locations in the plasma [3]. We choose 

parametrized smooth functions to fit the experimental 

data, thus accurately representing the transition from a 

pinched parabolic profile near the magnet to a more 

circularly symmetric profile further away in the (𝑟, 𝜃) 
plots [3], which is then converted to a surface of 

revolution to represent the φ symmetry in the 

configuration. The Lorentz force equation is solved 

numerically both by direct integration using a 

Runge-Kutta procedures, but also formulated analytically 

using a Lagrangian-Hamiltonian formulation, and the 

trajectories are studied. Assuming a dipole magnetic field 

oriented along the positive 𝑧-axis and of dipole moment 

𝑚, we obtain the following Lagrangian (in spherical 

coordinates) for the system: 
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where Φ is the space potential of the plasma and 𝑘 =
𝑒𝜇0𝑚

4𝜋
 is a lumped constant. The conjugate momenta and 

Hamiltonian is constructed subsequently, and the 

constants of motion are identified. The trajectories are 

then obtained in phase space numerically and studied in 

the equatorial and polar limits, as well as characterized 

into periodic and chaotic orbits.  

   To account for the collisional drag in the plasma, 

namely for electron-neutral collisions, we write the 

equation of motion using the Langevin equation as 

follows: 

𝑚𝑒

𝜕𝒖𝒆

𝜕𝑡
= −𝑒(𝑬 + 𝒖𝒆 × 𝑩) − 𝑚𝑒𝜐𝑐𝒖𝒆 

where 𝜐𝑐(𝒓) is the effective collision frequency. In our 

system of choice, this may be calculated in terms of the 

electron temperature and the neutral pressure in the 

plasma [3]. The profiles of the electron temperature in all 

space are again reconstructed from experimental data [3] 

in a similar fashion as that used for the space potential. 

Owing to the inclusion of the dissipative force term in 

the equation of motion, a Lagrangian-Hamiltonian 

formulation of the problem becomes considerably 

difficult. We thus, attempt to solve this equation 

numerically using a Runge-Kutta procedure, and the 

trajectories of the particles are studied. The effect of drag 

is characterized and the chaotic particle trajectories are 

intended to be investigated using standard non-linear 

dynamical techniques [5].   

 

References:  

 

[1] Sandoval-Vallarta S M Theory of the geomagnetic 

effect of cosmic radiation Cosmic Rays I 

(Encyclopedia of Physics vol 9/46/1) (New York: 

Springer) pp 88–129 (1961) 

[2] E. Cortés et. al. Eur. J. Phys. 36 055009 (2015) 

[3] A. R. Baitha et. al. AIP Advances, 10 045328 (2020) 

[4] S. Bhattacharjee et al Phys. Scr. 96 035605 (2021) 

[5] Strogatz, Steven H. Nonlinear Dynamics and Chaos: 

with Applications to Physics, Biology, Chemistry, and 

Engineering. Boulder, CO: Westview Press (2015). 

 


