Gyrokinetic simulation studies of ExB staircase in KSTAR L-mode plasmas

B. J. Kang1, J. H. Seo2, L. Qi2 and T. S. Hahm1

1 Department of Nuclear Engineering, Seoul National University
2 Korea Institute of Fusion Energy

e-mail (speaker): bjun1215@snu.ac.kr

It was found that turbulence in hot magnetized plasmas generates a self-organized flow structure which is called ExB staircase [1]. To study the role of ExB staircase, we investigate KSTAR L-mode plasmas using global nonlinear gyrokinetic code gyroKinetic Plasma Simulation Program (gKPSP) [2]. Nonlinear simulations comparing Linear Ohmic Confinement (LOC) and Saturated Ohmic Confinement (SOC) plasmas with KSTAR parameters have been performed. ExB Staircase structure has been found as observed in KSTAR experiments [3] and other gKPSP simulations [4,5]. Staircase structure is only found in SOC plasma, which is consistent with the experimental results of Tore Supra [6]. Non-diffusive avalanche events and intermittent bursts are observed for both cases but they show different properties. These turbulence transport properties and the role of ExB staircase are being investigated.

References
[5] Lei Qi et al., Nucl. Fusion \textbf{61} 026010 (2021)