

5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference Global *E* × *B* pattern formation in tokamak plasmas resembles the traffic-jam L. Qi¹, T. S. Hahm², M. Leconte¹, J.-M. Kwon¹, M. J. Choi¹

¹ Korea Institute of Fusion Energy, South Korea, ² Department of Nuclear Engineering, Seoul

National University, South Korea

e-mail (speaker): qileister@kfe.re.kr

The $E \times B$ staircase-like pattern formation is found to resemble the traffic jam in the first principle gyrokinetic numerical experiments of tokamak fusion plasmas[1-3]. Simulations demonstrate the finite response time of individual particle's transport to the mean flux analogous to the driver's adaptation time to the steady-state traffic speed, as shown in Fig. 1. The response time decreases as the mean flux rises, and staircase-like patterns are more arduous to develop with higher ambient flux, as shown in Fig. 2. Staircase-like corrugations in the particle flux cause staircases in the density profile after a finite time delay. A feedback loop is verified to sustain the staircases formation, and $E \times B$ flow staircases shearing plays a key role. The numerical experiments support a previous heuristic model[4,5] of zonal flow staircase generation.

References

- [1] L. Qi et al., Nucl. Fusion 57, 124002 (2017)
- [2] L. Qi et al., Nucl. Fusion 59, 026013 (2019)
- [3] L. Qi et al., Nucl. Fusion 61, 026010 (2020)
- [4] Y. Kosuga et al., Phys. Rev. Lett. 110, 105002 (2013)
- [5] Y. Kosuga et al., Phys. Plasmas **21**, 055701 (2014)

Figure 1: Time evolution of staircase intensity of electron particle flux Γ_e and electron density fluctuation δn_e .

Figure 2: Response time τ (black-solid) and particle flux diffusivity *D* (red-dash) as a function of $R/L_{Te} - R/L_{Te}^c$. Here R/L_{Te}^c is the linear critical electron temperature gradient. The response time fits a power law scaling $\tau \sim A^{-0.8}$ well.

