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The motion of fluid particles are regarded as 
transformation by the diffeomorphism group of a region 
filled by a fluid. Denote the velocity and the vorticity 
fields by v and 𝛚𝛚 = 𝛁𝛁 × v as functions of the space 𝒙𝒙 
and the time 𝑡𝑡. The circulation and the helicity 

h[𝒗𝒗]=1
2
∫ 𝛚𝛚 ⋅v dV 

are particular integral invariants of an ideal fluid in the 
sense that they are conserved under any diffeomorphism, 
independently of the Euler equations, unlike the energy, 
the impulse and the angular impulse. The helicity is an 
integral that makes distinction between `right-handed' and 
`left-handed' of the vortical structure, and holds the key to 
an understanding of the mechanism for formation of large-
scale coherent structures in the atmosphere, oceans and 
the universe. 

When the viscosity, the heat conductivity and the 
electric resistivity are ignored, the motion of a neutral and 
a conducting fluids constitutes the Hamiltonian dynamical 
system of infinite degrees of freedom. The equation is the 
Lie-Poisson equation with degenerate Hamiltonian 
structure [1], rather than the canonical Hamiltonian 
equation. In the configuration space, symplectic leaves 
form a foliation structure, with each leaf specified by the 
value of the Casimir invariants. The motion of the fluid 
does not go through the entire space of the observables, 
but is restricted to a symplectic leaf. Among the Casimirs 
is the helicity. 

We can confirm, with use of the Lie-Poisson equation, 
that the Casimir invariants are constant of motion for any 
choice of the Hamiltonian function, but they do not make 
their appearance. The Nambu bracket [2], which is an 
extension of the Lie-Poisson brackets, makes them 
explicit; in the Nambu bracket, the Casimir invariants are 
given the role of the Hamiltonian functions. This is the 
case with the helicity for a barotropic fluid [3]. The 
purpose of this investigation is to extend the Nambu 
bracket to the magnetohydrodynamics (MHD). 
 
As a preliminary step, we describe the Nambu-bracket 
representation for an incompressible barotropic fluid. The 
density ρ of the fluid is taken to be constant The Euler 
equation is written in the form of the Poisson equation, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= {𝐹𝐹,𝐻𝐻}, 
for a functional 𝐹𝐹  of v and the Hamiltonian 𝐻𝐻 =
𝜌𝜌
2
∫ 𝑣𝑣2𝑑𝑑𝑑𝑑 with use of the Li-Poisson bracket [1], 

{𝐹𝐹,𝐻𝐻} = ∫ (∇ × 𝒗𝒗) ⋅ �
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗

×
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗
� 𝑑𝑑𝑑𝑑. 

The first factor in the integrand is the vorticity and is given 
by the functional derivative of the helicity h, 

{𝐹𝐹,𝐻𝐻} = ∫
𝛿𝛿ℎ
𝛿𝛿𝒗𝒗

⋅ �
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗

×
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗
� 𝑑𝑑𝑑𝑑 = {𝐹𝐹,𝐻𝐻, ℎ}𝑣𝑣𝑣𝑣𝑣𝑣 . 

This is a prototype of the Nambu bracket [3]. 
 
For MHD, the Lorentz force stands as an obstacle against 
the conservation of the circulation and the helicity. In 
order to seek all the topological invariants, we resort to 
Noether's theorem, which states that, in the framework of 
Hamilton's principle of the least action, a symmetry 
keeping the action brings in the conservation law and vice 
versa. Specifically, we inquire into the particle labeling 
symmetry behind the topological invariant. By applying 
this idea to the variational principle for the momentum 
equation of the MHD, we gain the cross-helicity, as an 
integral invariant (cf. [4, 5]), 

ℎ𝑐𝑐[𝒗𝒗,𝑫𝑫] = ∫ 𝒗𝒗 ⋅ 𝑫𝑫dV, 
where 𝑫𝑫 = 𝑫𝑫(𝒙𝒙, 𝑡𝑡)  is a solenoidal vector field frozen 
into the fluid,  

𝐷𝐷
𝐷𝐷𝐷𝐷
�𝑫𝑫
𝜌𝜌
� = �𝑫𝑫

𝜌𝜌
⋅ ∇�v, 

with additional constraints required by the density 
stratification and the Lorentz force, 

∇ ⋅ 𝑫𝑫 = 0, (𝐃𝐃 ⋅ ∇)s = 0, ∇ × �𝑩𝑩 × 𝑫𝑫
𝜌𝜌
� = 𝟎𝟎. 

Here ρ, s and B are the density, the specific entropy of the 
fluid and the magnetic field. For the ideal MHD, the total 
mass M and the total entropy S defined by 

𝑀𝑀 = ∫ ρdV, 𝑆𝑆 = ∫ ρsdV, 
and the magnetic helicity ℎm,  defined with use of the 
vector potential A for the magnetic field (𝑩𝑩 = ∇ × 𝑨𝑨), 

ℎm[𝑨𝑨] = 1
2
∫ 𝑨𝑨 ⋅ 𝑩𝑩dV, 

are also Casimir invariants. The Nambu bracket for the 
ideal MHD is constructed using all the four Casimir 
invariants ℎc, ℎ𝑚𝑚,𝑀𝑀 and S. 
 
It remains as a difficulty to show that the cross-helicity ℎc 
is a Casimir invariant [6]. This difficulty is resolved by 
our Nambu bracket. The Lie-Poisson bracket induced 
from the Nambu bracket is not the well-known one [1] 
itself, but gives an extension of this. The extended Lie-
Poisson bracket automatically guarantees the cross-
helicity to be a Casimir invariant. A remark is given to 
Noether’s second theorem. 
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