

5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference
Forming a supercritical magnetized collisionless shock using high-power lasers <u>R. Yamazaki^{1,2}</u>, S. J. Tanaka¹, N. Ishizaka¹, S. Kakuchi¹, S. Sei¹, K. Sugiyama¹, K. Aihara¹, S. Kanbayashi¹, R. Shiina¹, Y. Sato¹, J. Shiota¹, K. Matsui⁴, A. Takata¹, T. Sano², M. Ota², S. Egashira², T. Izumi², D. Ishihara², O. Kuramoto², Y. Matsumoto², K. Maeda², S. Matsukiyo³, S. Isayama³, T. Morita³, H. Luo³, M. Edamoto³, T. Kojima³, S. Matsuo³, E. Kuramoto³, T. Takezaki⁴, T. Oguchi⁴, K. Tomita³, T. Minami⁵, K. Sakai⁵, T. Nishimoto⁵, K. Iwasaki⁵, K. Himeno⁵,
T. Taguchi⁵, Y. Kuramitsu⁵, K. Tomita⁶, N. Ohnishi⁷, T. Umeda⁸, Y. Ohira⁹, A. Ishii¹⁰, Y. Sakawa²
¹Department of Physical Sciences, Aoyama Gakuin University, ²Institute of Laser Engineering, Osaka University, ³Faculty of Engineering Sciences, Kyushu University, ⁴Faculty of Engineering Sciences, University of Toyama, ⁵Graduate School of Engineering, Osaka University, ⁶Division of Quantum Science and Engineering, Hokkaido University, ⁷Department of Aerospace Engineering, Tohoku University, ⁸Institute for Space-Earth Environmental Research, Nagoya University, ⁹Department of Earth and Planetary Science, The University of Tokyo, ¹⁰Max Planck Institute for Gravitational Physics (Potsdam)

e-mail: ryo@phys.aoyama.ac.jp

Collisionless shocks are ubiquitous in various astrophysical, heliospheric, solar-terrestrial, and laboratory phenomena. The dissipation mechanism as well as particle acceleration there is not yet clarified as of yet. Recently, laboratory astrophysics has developed, reproducing collisionless shocks in the laboratory. It is outstanding that physical parameters like Mach number and plasma beta are controllable. Although this potential ability of the laboratory experiment is attractive, the methodology of experiments or the data analysis techniques have not been well established. Here we present our recent attempt to excite a collisionless shock propagating into magnetized plasma at rest using Gekko XII kilo-Jule-class high-power lasers at Osaka University. With a help of laser Thomson scattering and plasma self emission measurements, we see a possible signature of the collisionless shock with Alfven Mach number of around 15.