

5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference **High power laser experiment on collisionless shocks**

and the associated PIC simulation

S. Matsukiyo¹, S. Isayama¹, T. Morita¹, T. Takezaki², K. Tomita³, R. Yamazaki⁴, Y. Kuramitsu⁵, S.-J. Tanaka⁴, T. Sano⁶, M. Iwamoto¹, H. Luo¹, K. Takahashi¹, R. Higashi¹, S. Egashira⁷, M. Ohta⁷, H. Ishihara⁷, Y. Nakagawa⁷, O. Kuramoto⁷, Y. Matsumoto⁷, T. Minami⁵, K. Sakai⁵, T. Nishimoto⁵, K. Iwasaki⁵, K. Himeno⁵, T. Taguchi⁵, M. Edamoto¹, T. Kojima¹, S. Matsuo¹, E. Kuramoto¹, Y. Sato⁴, K. Obayashi⁴, K. Aihara⁴, Y. Sato⁴, S. Ide⁴, T. Oguchi², Y. Sakawa⁶

¹Faculty of Engineering Sciences, Kyushu University, ²Faculty of Engineering, University of Toyama, ³Division of Quantum Science and Engineering, Hokkaido University, ⁴Department of Physical Sciences, Aoyama Gakuin University, ⁵Graduate School of Engineering, Osaka University, ⁶Institute of Laser Engineering, Osaka University, ⁷Graduate School of Science, Osaka University e-mail: matsukiy@esst.kyushu-u.ac.jp

Collisionless shocks often play important roles in various high energy phenomena in space. The efforts of producing a collisionless shock in a laboratory using high power laser have been dedicated in recent years. We have developed the way producing a magnetized collisionless shock in a homogeneous gas plasma at rest by utilizing Gekko XII laser facility at Osaka University. The shock is formed by irradiating a target aluminum plate surrounded by a nitrogen gas. An aluminum ablation plasma pushes a gas plasma to form a forward shock in the gas plasma. Time evolution of the system is observed by both self-emission streaked optical pyrometer (SOP) and Thomson scattering (TS) measurement. The ambient magnetic field of ~3.6-3.8T is applied by using a Helmholtz coil driven by a portable pulsed magnetic field generation system [1]. Only when the magnetic field was applied, the SOP showed that a precursor which is a preheated upstream plasma formed in front of a shock disappeared. The TS measurement captured discontinuities after a long time evolution of the magnetized shock system.

We developed a simulation method to reproduce the interaction between a target plasma and a gas plasma by using one dimensional full particle-in-cell (PIC) code. A dense Maxwellian plasma is injected from the position at x=0 for a finite time in the system filled with a tenuous background magnetized gas plasma at rest. A magnetized shock is formed after about 40ns and evolves in time. The system is nonstationary in time. In addition to a forward shock, a reverse shock is formed in a later time. The results are compared with the experiment.

References

 M. Edamoto, T. Morita, N. Saito, Y. Itadani, S. Miura, S. Fujioka, H. Nakashima, and N. Yamamoto, Rev. Sci.Instruments89, 094706 (2018)