

5* Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference Reducing the L-H Transition Power Threshold in ITER-Similar-Shape DIII-D Hydrogen Plasmas

L. Schmitz¹, R.S. Wilcox², D. Shiraki², T.L. Rhodes¹, Z. Yan³, G.R. McKee³, K. Callahan¹, Y.Q. Liu⁴, T. Osborne⁴, L. Zeng¹, S.R. Haskey⁵, C. Chrystal⁴, B. Grierson⁵, F.Laggner⁵, C. Paz-Soldan⁴, N. Leuthold⁴, B. Lyons⁴, P. Gohil⁴, C.C. Petty⁴

¹University of California Los Angeles, ²Oak Ridge National Laboratory, ³University of Wisconsin-Madison, ⁴General Atomics, ⁵Princeton Plasma Physics Laboratory e-mail (speaker): lschmitz@ucla.edu

Recent experiments in electron-heat- dominated, low-torque, ITER-similar-shape (ISS) hydrogen plasmas $(q_{95} \sim 3.6)$ show that the L-H transition power threshold $P_{\rm LH}$ can be reduced substantially (~25-30%) with moderate Helium trace injection (helium ion fraction $n_{He}/n_{H} \le 25\%$ during the ensuing H-mode [Fig. 1(b)]. Without mitigation, the power threshold was higher by a factor of ~3 compared to reference deuterium ISS plasmas due to the significant edge electron heat flux $[Q_e(\rho=0.95)/Q_i(\rho=0.95) = 1.2-2]$ [Fig. 1(a)]. Hydrogen ISS plasmas with increased edge safety factor q_{95} ~5 exhibited a significantly lower power threshold, an observation not accounted for by the commonly used multi-machine threshold scaling [1] (a dependence of $P_{\rm LH}$ on q_{95} was observed in deuterium ISS plasmas only at mid-density [2]). In co-injected plasmas, $P_{\rm LH}$ increased with neutral beam torque as previously observed in DIII-D deuterium plasmas.

Techniques for reducing $P_{\rm LH}$ are very important for ITER, in particular for hydrogen plasma operations during the PFPO-1 campaign with marginal auxiliary heating (20-30 MW of ECH). We report here also new observations that $P_{\rm LH}$ can be effectively reduced at low ion edge collisionality via applied n=3 Non-Resonant Magnetic Perturbations (NRMF), producing local edge counter-current torque via the Neoclassical Toroidal Viscosity (NTV) at the plasma edge, consistent with linear plasma response simulations.

These results contrast with the increased L-H power threshold observed with applied n=3 *Resonant* Magnetic Perturbations (RMP) in DIII-D, ascribed to edge stochastization due to island overlap [3], and reduced Reynolds stress [4].

Hydrogen fuel pellet injection of 1.7 mm diameter pellets did transiently increase the edge density gradient, but did not result in a robust reduction of P_{LH} , in contrast to earlier DIII-D deuterium experiments with larger 2.7 mm pellets, where the threshold was reduced by ~ 25%.

Control of L-mode $E \times B$ shear via Helium seeding [Fig. 1(b)], or applied NRMF/NTV via the DIII-D n=3 C-coil) can open up a path for reducing P_{LH} in ITER during the non-nuclear Pre-Fusion Power Operations (PFPO-1) phase. For example, the ITER 3-D internal coil set can be used to generate large NTV in the edge plasma layer, favored by the relatively low collisionality expected in the ITER L-mode edge.

This work was supported by the US Department of Energy under DE-SC0020287¹, DE-FG02-08ER54984¹, DE-AC05-00 OR22725², DE-FG02-08ER 54999³, DE-FC02-04ER54698⁴, and DE-AC02-09CH11466⁵.

References

- [1] Martin et al., J. Phys. Conf. Series 123 012033 (2008).
- [2] Z. Yan et al., Phys. Plasmas 26, 062507 (2019).
- [3] L. Schmitz et al., Nucl. Fusion 59 126010 (2019)
- [4] D.M. Kriete et al., Phys. Plasmas 27 062507 (2020).

Fig. 1: (a) L-H transition power threshold in ISS hydrogen and deuterium plasmas vs. density, for different values of the edge safety factor q_{95} and NBI torque *T*; (b) L-H transition power threshold in DIII-D ISS plasmas with helium seeding vs. H-mode helium ion fraction $n_{\text{He}}/n_{\text{H}_{i}}$ for two different L-mode plasma densities; (c) L-H power threshold in ISS hydrogen plasmas vs. NBI torque w/wo applied n=3 NRMF (the equivalent range of expected intrinsic L-mode torque in ITER is indicated in yellow).