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 In real-time toroidal plasma experiments, accurate 

physics-based information of plasma instabilities can 

provide important guidance for successful plasma control. 

First-principles based simulations of plasma instabilities 

can improve the accurate understanding and prediction 

of the dynamics and transport at the plasma core and 

edge in future fusion devices, it can be expensive 

computationally to conduct these simulations. For 

example, simulation time for physical instabilities using 

gyrokinetic particle-in-cell codes is often on the order of 

hours on modern GPUs, making the direct application of 

these codes in real-time experiments infeasible. On the 

other hand, statistical methods including machine 

learning models have been applied in the Plasma Control 

System (PCS) to predict plasma behaviors. Recently 

deeplearning-based models have achieved promising 

results in disruption predictions [1] and the prediction of 

perturbed magnetic signals [2,3]. Here we present the 

first results on building a deep-learning based surrogate 

model (as shown in Fig. 1) as a physics-based instability 

simulator, trained based on data from global gyrokinetic 

toroidal code (GTC)[4], which has performed thousands 

of electromagnetic simulations on kink instability in the 

fluid limit by suppressing all kinetic effects and using the 

DIII-D experimental equilibria. 

GTC first-principles simulation data are generated and 

used for training, validation and testing of SGTC. we ran 

GTC electromagnetic linear simulations of the 

non-tearing n=1 instabilities in the ideal MHD limit with 

equilibrium current and compressible magnetic 

perturbations [5], where n is the toroidal mode number, 

for 5758 equilibriums selected from DIII-D experiments. 

we then performed supervised training of SGTC models 

with these DIII-D equilibria and GTC output data. In 

most of the GTC simulations finding unstable modes, the 

mode structures resemble those of the internal kink 

modes with dominant m=1 component in electrostatic 

potential near the q = 1 rational surface. As the first study, 

a hand-tuned Convolutional Neural Network (CNN) was 

trained to predict the stability, i.e., classification between 

stable and unstable cases. The accuracy of the prediction 

on test cases is 89%, outperforming the non-DL methods 

like a random forest (with the accuracy 85%). Then an 

ensemble of CNNs is trained to predict the growth rate of 

the kink mode. The models are generated by automatic 

hyperparameter tunning. 10 best performing models are 

used for the prediction. The results shown in Figure 2 

suggests good prediction for low growth rate cases where 

we have more training data. Another ensemble of CNNs 

is trained to predict the mode structure. The result is 

shown in Figure 3. The key features of kink modes such 

as m=1 structure and large mode amplitude inside q=1 

surface are successfully captured by the deep learning 

model. These predictions are done within 1ms and fit the 

requirement of DIII-D PCS 

 
Figure 1 SGTC prediction of the growth rate of the kink 

mode 

    
Figure 2 SGTC prediction of kink mode structure 

 

In summary, The SGTC internal kink simulators 

demonstrate strong predictive capabilities and shortens 

the simulation time by at least six orders of magnitude, 

and presents for the first time the possibility of bringing 

physics-based instability information from the 

first-principles based massively parallel simulations into 

the PCS of modern tokamak 

References 

[1] Kates-Harbeck et al, Nature 568 526(2019) 

[2] Fu et al, Phys. Plasmas 27 022501(2020) 

[3] Lyons et al, Phys. Plasmas 25 056111(2018) 

[4] Lin et al, Science 281 1835(1998) 

[5] Dong et al, Phys. Plasmas 24 081205(2017) 
 

 


