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It is well known that the boundary plasma plays a critical role in the performance of tokamak 

plasma fusion and that it requires extreme-scale computing for kinetic first-principles-based 

understandings due to the non-Maxwellian and multi-species nature.  The non-Maxwellian 

distribution function demands total-f simulations with ~10,000 particles per cell, as opposed to the 

low-cost (100 or less particles per cell) delta-f simulations that assumes that the background 

particle distribution function is Maxwellian.  The real cost raiser for a realistic ITER simulation is 

the necessity for nonlinear Fokker-Planck collision operator in a non-Maxwellian plasma in the 

presence of wall sputtered impurity particles.  For example, Tungsten particles could have tens of 

different charge states/species which collide with each other in different ways.  In the XGC edge 

gyrokinetic code that uses state-of-the-art Fokker-Planck operation, the cost of the nonlinear 

Coulomb collision increases as N2, where N is the number of different plasma and charge species.  

Without a game-changing improvement of the nonlinear Fokker-Planck algorithm, the Coulomb 

collision cost can become prohibitively expensive.  An accurate digital twin or surrogate model 

development using machine learning could resolve this issue. 

 

In this work, in collaboration with applied mathematicians, the nonlinear Fokker-Planck operator 

has been replaced by an encoder-decoder neural network1,2. A salient feature of the present neural 

network is that it is trained specifically to respect conservation properties of the Fokker-Planck 

collision operator including mass, momentum, and energy, together with the H-theorem, to the 

accuracy required by the gyrokinetic XGC simulation. Satisfying physics constraint to such a high 

accuracy has been a difficult problem in the machine learning community.  Results of electrostatic 

turbulence XGC simulations using the machine learning collision operator will be presented, 

comparing the velocity distribution functions and multiscale edge physics dynamics resulting from 

the normal and ML-collision solver simulations. 
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