

5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference

Energy Transfer of Alfvénic Turbulence in the Heliosphere

<u>Liping Yang^{1,2}</u>, Jiansen He², Daniel Verscharen^{3,4}, Hui Li⁵, Trevor A. Bowen⁶, Stuart D. Bale^{7,6,8,9}, Ying Wang², Lei Zhang¹⁰, Honghong Wu², Xueshang Feng¹

¹SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

²School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China

³Mullard Space Science Laboratory University College London Dorking, RH5 6NT United Kingdom

⁴Space Science Center, University of New Hampshire, Durham NH 03824, USA
⁵Theoretical Division, Los Alamos National Laboratory, Los Alamos NM 87545, USA
⁶Space Sciences Laboratory, University of California, Berkeley CA 94720-7450, USA
⁷Physics Department, University of California, Berkeley CA 94720-7300, USA
⁸School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
⁹The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
¹⁰Qian Xuesen Laboratory of Space Technology, Beijing 100190, People's Republic of China e-mail (speaker):lpyang@swl.ac.cn

As a universal plasma process, Alfvénic turbulence plays a critical role in space, astronomy, and even laboratory. A fundamental issue about it is how the energy transfers. which remains a challenging mystery. By analyzing both the in-situ measurements from Parker Solar Probe and the advanced modeling results, we find that the energy transfer of Alfvénic turbulence is completed by nonlinear interactions between unidirectional Alfvén waves and mutualistic structures, rather than the interactions between counter-propagating Alfvén waves in the commonly invoked scenario. The major waves transfer their energy to smaller-scale waves chiefly through the interactions with the minor structures of similar scale, creating their Kolmogorov-like spectrum, while the structures cascade by the interactions with large-scale waves and get a power-law spectrum with the index being -1. Such findings unveil the essential energy transfer physics of Alfvénic turbulence, offering insights for MHD turbulence models while renewing our understanding of the turbulent plasma.