Complete View of Solar Coronal Fast-mode Shock Waves: EUV wave + Halo CME<br>Ryun-Young Kwon<br>Space Science Division, Korea Astronomy and Space Science Institute<br>e-mail (speaker): rkwon@kasi.re.kr

We present the observations of spherical, circumsolar coronal shocks associated with flares and coronal mass ejections (CMEs). This talk shows their morphology seen from multiple vantage point observations; threedimensional (3D) geometry determined by a forward modeling method ${ }^{[1,2]}$; kinematics all along the shock fronts in $3 \mathrm{D}^{[3]}$; and compression ratio (Mach number) ${ }^{[4]}$. The major findings are as follows: (1) Halo CMEs are the manifestation of spherically shaped fast-mode waves/shocks, rather than a matter of the projection of expanding flux ropes. The footprints of halo CMEs on the coronal base are the so-called EIT/EUV waves. (2) These spherical fronts arise from a driven shock (bow- or pistontype) close to the CME nose, and it is gradually becoming a freely propagating (decaying) fast-mode shock wave at the flank. (3) Such large longitudinal extents of these shock waves in the corona agree with those of the solar energetic particles (SEPs) in the heliosphere ${ }^{[5]}$. (4) The shock density compressions peak around the CME nose and decrease at larger position angles. (5) Last but not least, the supercritical region extends over a large area of the shock and lasts longer than past reports. These results
offer a simple unified picture of the different manifestations for CME-associated waves, such as EUV waves and SEP events observed in a variety of regimes and heliocentric distances.

## References

[1] Kwon, Ryun-Young; Zhang, Jie; Olmedo, Oscar ApJ, 794, 148 (2014)
[2] Kwon, Ryun-Young; Zhang, Jie; Vourlidas, Angelos ApJ, 799, L29 (2015)
[3] Kwon, Ryun-Young; Vourlidas, Angelos ApJ, 836, 246 (2017)
[4] Kwon, Ryun-Young; Vourlidas, Angelos JSWSC, 8, A08 (2018)
[5] Lario, D. et al. ApJ, 819, 72 (2016)

