
5th Asia-Pacific Conference on Plasma Physics, 26 Sept-1Oct, 2021, Remote e-conference

Development of a particle-in-cell simulation code for

elucidating cosmic-ray accelerations in the exa-scale computing era
Yosuke Matsumoto

Graduate School of Science, Chiba University

ymatumot@chiba-u.jp

 Particle-in-cell (PIC) simulations have been used for

understanding particle accelerations, particle transport

and magnetic field generation in space and astrophysical

phenomena. The PIC simulation bases on the Vlasov

equation in which the distribution function of each

particle species evolves in the phase space in response to

the electric and magnetic field time evolution. While the

evolution of the distribution function is represented by

motions of finite numbers of macro particles, the electric

and magnetic field evolution are represented by a

disretized form of the Maxwell equations; the PIC

simulation is composed of Eulerian and Lagrangian

methods.

Using massively parallel supercomputer systems with a

parallelized PIC code is a powerful way to elucidate such

nonlinear phenomena. When using very large numbers of

processor cores (say, greater than 1000 cores), the code

needs to adopt a domain decomposition method, in

which each MPI process is associated with a portion of

the whole region, for an efficient parallelization.

Although this parallelism introduces somewhat

cumbersome implementations to the code for exchanging

arbitrary numbers of particles among MPI processes

every time step, resulting high scalability allows us to

examine with unprecedentedly large-scale simulations.

Indeed, we have elucidated important acceleration

mechanisms in collision-less shocks by using the

Japanese flagship supercomputer system with a hundred

of thousands of processor cores (e.g., Matsumoto et al.,

2017).

Here we report an upgrade with an implementation of an

adaptive load balancing method to our PIC code. The

load imbalance among MPI processes in PIC simulations

arises if particles were in-homogeneously distributed in

the simulation domain as a result of time evolution. This

imbalance becomes problematic when using very large

numbers of MPI processes (say greater than millions of

cores), and we expect to meet this situation with the

current Japanese flagship system called FUGAKU. A

few approaches have been proposed and implemented in

PIC codes. For example, in PSC and SUMILEI codes

(Germaschewski et al., 2016; Derouillat et al., 2018),

each domain of a MPI process is further divided into

sub-domains, and these "patches" are exchanged among

the processes so that the total number of particles in each

MPI domain is equally distributed. The exchange of

patches is determined according to the Hilbert curve

passing through them. The resulting shape of each

domain is rather irregular, which complicates

inter-process communications.

Alternatively, we adopt the recursive multi-section

algorithm which have been successfully implemented

into the cosmological N-body simulations (Makino,

2004; Ishiyama et al., 2009). This method requires rather

simple inter-process communications because each MPI

domain is a rectangular shape. We successfully

implemented this method to the PIC code for the first

time with benchmark tests of the Weibel instability and

collision-less shock simulations. Benchmark tests of the

Weibel instability show that this technique is capable of

maintaining the workload balance in a controllable way.

In addition, it also adapts to the moving injector

boundary which is a standard technique for examining

collision-less shock simulations (Figure 1).

In this presentation, we report our new PIC code and its

application to collision less shock simulation by using

FUGAKU system.

References

Y. Matsumoto et al., Phys. Rev. Lett., 2017

Figure1 Relativistic shock simulation by using our new

PIC code. Electron density as a 2D color map and the

MPI subdomains surrounded by white lines are shown.

