

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

Laboratory generation and applications of uniform dense plasma

Jieru Ren¹, Yongtao Zhao¹, Dieter H. H. Hoffmann¹, Wenqing Wei¹, Xing Xu¹, Xing Wang¹, Bubo

Ma¹, Benzheng Chen¹, Shisheng Zhang¹, Shuai Yin¹, Jianhua Feng¹, Zhongmin Hu¹, Fangfang Li¹,

Hao Xu¹, Lirong Liu¹, Wei Liu^{1,3}, Zhongfeng Xu¹, Zhigang Deng², Wei Qi², Shaoyi Wang²,

Quanping Fan², Weimin Zhou², Zongqing Zhao², Zhurong Cao², Yuqiu Gu², Yong Chen², Bo Cui²,

Shukai He², Shaoping Zhu^{2,4,5}, Leifeng Cao⁶, Dong Wu⁷, Rui Cheng⁸, Guoqing Xiao⁸, Hongwei

Zhao⁸, Yihang Zhang^{9,10}, Zhe Zhang^{9,10}, Yutong Li^{9,10}

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China

² Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China

³ Xi'an Technological University, Xi'an 710021, China

⁴Institute of Applied Physics and Computational Mathematics, Beijing 100094, China.

⁵Graduate School, China Academy of Engineering, Physics, Beijing 100088, China.

⁶Advanced Materials Testing Technology Research Center, Shenzhen University of Technology, Shenzhen, 518118, China

⁷Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310058, China.

⁸ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730070, China

⁹Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

¹⁰School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China e-mail: renjieru@xjtu.edu.cn

Laboratory generation of uniform dense plasmas have important applications in a wide range of fields. We created a well-defined, uniform, relatively large-scale ~millimeter plasma sample through heating a Acetate (TCA) foam Tri-Cellulose with the high-power-laser-driven hohlraum radiation (see Fig.1). The temperature of the plasma is about 17eV, and the electron temperature is about 4*10²⁰ cm⁻³. Using the plasma sample, 1) we studied the laser-accelerated intense proton beam stopping process. It was demonstrated that owing to a collective effect, the energy loss is enhanced by about one order of magnitude compared to individual ion stopping theory predictions [1]; 2) The temperature and the C/O ratio of the plasma sample are similar to those of White Dwarf (WD) H1504+65's atmosphere. We obtained the well-resolved emission lines of the plasma sample and make detailed comparison with Chandra telescope observations. Our well-resolved results help to distinguish the weak lines and provide reference data to benchmark the related models [2]; 3)We experimentally studied the p¹¹B nuclear reactions in plasma circumstance, and found that the reaction product yield are enhanced in plasmas compared with cold matter and the yield increase with beam intensity non-linearly; 4) We studied the charge transfer process of laser-accelerated carbon ions in the plasma, and found

that the target density effect plays important roles in the current case; 5) We propose to the generate high-current relativistic electron beam and brilliant X/γ sources through laser interaction with this near critical density plasma. The temperature of the electron beam is expected to be enhanced by order compared with laser-foil interaction.

Fig 1. (a) Layout of the experiment; (b) Raw spectra recorded with flat field grating spectrometer. Reference

- [1] Jieru Ren, Zhigang Deng, Wei Qi et al., Nature Communications 11, 5157 (2020).
- [2] Bubo Ma, Jieru Ren, Shaoyi Wang et al., The Astrophysical Journal 920, 106 (2021).