

6* Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted gamma-photons

Zheng Gong¹, Karen Z. Hatsagortsyan¹ and Christoph H. Keitel¹

Max Planck Institute for Nuclear Physics, Heidelberg, Germany e-mail (speaker): gong@mpi-hd.mpg.de

Understanding and interpretation of the dynamics of ultrarelativistic plasma is a challenge, which calls for the development of methods for in situ probing the plasma dynamical characteristics. We put forward a new method, harnessing polarization properties of gamma-photons emitted from a non-pre-polarized plasma irradiated by a circularly polarized pulse. We show that the angular pattern of gamma-photon linear polarization is explicitly correlated with the dynamics of the radiating electrons, which provides information on the laser-plasma interaction regime. Furthermore, with the gamma-photon circular polarization originating from the electron radiative spin-flips, the plasma susceptibility to quantum electrodynamical processes is gauged. Our study demonstrates that the polarization signal of emitted gamma-photons can be a versatile information source, which would be beneficial for the research fields of laser-driven plasma, accelerator science, and laboratory astrophysics.

References

 Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, Physical review letters 127 (16), 165002 (2021).
Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, Physical Review Research 4 (2), L022024 (2022).

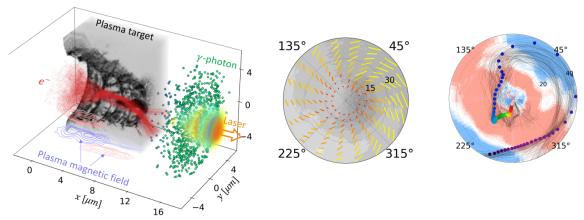


Figure 1. Left panel: 3D PIC simulation results of a plasma slab target irradiated by a strong laser pulse. Middle panel: the angular distribution of gamma photon linear polarization. Right panel: the correlation between the electron acceleration dynamics and the angular distribution of spiral tendency of the gamma photon linear polarization.