

## 6<sup>th</sup> Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference **Recent development of EEDF measurement and control in multi-dipole confined hot cathode discharges at the ASIPP**

Chi-Shung Yip<sup>1</sup>, Chenyao Jin<sup>1,2</sup>, Wei Zhang<sup>1</sup>, Di Jiang<sup>1</sup>, Guo-Sheng Xu<sup>1</sup> <sup>1</sup> Chinese Academy of Sciences, Hefei Institutes of Physical Science, Institute of Plasma Physics <sup>2</sup> University of Science and Technology of China, Hefei 230026, China e-mail (speaker):csyip@ipp.ac.cn

This talk presents the latest works associated with electron temperature and density measurement and control in a multi-dipole confined hot cathode discharges from the ASIPP.

Implementing an improved model for Langmuir probe diagnostics to better separate the ion current from the I-V trace, a three-temperature Maxwellian EEDF composition is observed<sup>[1]</sup>. The dependence on neutral pressure and discharge current of each electron species suggests that sheath expansion and high energy electron current contribute differently on the Langmuir probe's I– V trace. It also supports the existence of a very hot (> 15 eV) degraded primary electron species separate from the typical hot electron (~ 3 eV) species. Thus, sweeping of the Langmuir probe beyond the bias voltage of the hot cathode will be necessary to resolve the contribution of the degraded primaries to the I–V trace.



Figure 1: Diagnostic Test Source – II (DTS-II) in the Institute of Plasma Physics



Figure 2: (a) Temperature  $T_{dp}$  and (b) relative density  $n_{dp}/n_e$  of the hottest electron species, (c) temperature  $T_{hot}$  and (d) relative density  $n_{hot}/n_e$  of the mid-temperature electron species, and (e) temperature  $T_{cold}$  and (f) relative density  $n_{cold}/n_e$  of the coldest-temperature electron species out of the three-Maxwellian EEDF graphed against neutral argon pressure  $P_{Ar}$  at various discharge current  $I_{Dis}$ .

MacKenzie's Maxwell Demon has been revisited with an added analytical aspect to show a higher energy selectiveness of the Maxwell Demon than that of the solid electrode for plasma heating<sup>[2]</sup>. Experimental results also show that the Maxwell Demon heats the plasma with smaller disturbance of electron density and plasma potential due to less absorption of higher energy electrons.

A new DC heated LaB6 cathode has been developed in the ASIPP in the recent years to directly replace existing tungsten filament discharges<sup>[3]</sup>. These cathode exhibits much less blackbody radiation than tungsten filaments due to their much lower work function. Cathode's emission performance is also shown to be greatly improved simply by designing a gas inlet close to the cathode, reducing space charge effects via neutral collisional effects.



Figure 3: Tungsten filament (a) and (c) and  $LaB_6 rod$  (b) and (d) hot cathode and DC discharge photo.

## References

- [1] C-S. Yip et al. PSST 31 (2022) 045002
- [2] C-S. Yip et al. Submitted to PSST
- [3] D. Jiang, et al. RSI 92 (2022) 123503

Note: Abstract should be in (full) double-columned one page.