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  In this talk, we focus on the numerical approximation 
of a hybrid fluid-kinetic plasma model for electrons, in 
which energetic electrons are described by a Vlasov type 
model whereas a fluid model is used for the cold 
population of electrons. The two models are coupled 
through the current in the Maxwell equations for the 
electromagnetic fields. Such hybrid modelling is of 
paramount importance to describe multiscale phenomena 
arising in Earth magnetosphere or tokamak plasmas in 
which hot particles interact with a cold bulk. The stiffest 
physical scale is indeed removed in this modelling, 
which enables to use numerical parameters that are not 
constrained by the stiffest physical scale.  
 
For this hybrid model, we discuss two reformulations 
which will serve as a basis for our numerical purposes. 
First, a Hamiltonian structure is proposed (with a 
Poisson bracket and a total energy) whereas in a second 
approach, we separate the linear and nonlinear terms of 
the model.  
 
The goal of this work is twofold. First, we investigate 
numerically the validity of the hybrid model compared to 
a fully Vlasov model, which contains a stiff physical 
scale (here the temperature cold/hot ratio). This is done 
in a reduced phase space configuration (one dimension in 
space and one dimension in velocity). Second, a 
comparison of Eulerian solvers (which use a grid of the 
phase space) is discussed in a four dimensional phase 
space (one dimension in space and three dimensions in 
velocity), on a Weibel type instability.  
 
To do so, we consider two Eulerian numerical methods, 
which use high order numerical approximation on a grid 
of the phase space.  
 
The first one is based on the Hamiltonian structure of the 
hybrid model which enables us to design a Hamiltonian 
splitting. It turns out that each subsystem generated by 
the Hamiltonian splitting can be solved exactly in time, 
which means that the time error only comes from the 
splitting. This approach are known to provide very good 
conservation of the total energy for large time, which is 
of particular importance for plasma applications. 
However, even if this approach turns out to be efficient 
in low dimensional case, its computation cost becomes a 
drawback when high order methods in time or when high 
dimensional configurations are employed since in both 
cases, the number of stages of the splitting increases 
dramatically.       
 

 
The second approach we propose here is based on linear-
nonlinear splitting reformulation amenable to use the so-
called exponential time integrators. These methods are 
based on a variation of constant formula where the linear 
part of the model is solved exactly in time whereas the 
nonlinear part is approximated by Runge-Kutta type 
strategies. This approach enables to derive high order 
time integrators still removing the CFL condition 
induced by the linear part (which is the most stringent 
one in practice), and whose cost is linear with respect to 
the order of the numerical method. We also propose a 
Padé approximation technique to approximate the 
exponential of the matrix corresponding to the linear part 
of the model ; this Padé approach enables to preserve the 
pure imaginary spectrum of the continuous model which 
has important consequences for the stability of the 
numerical method and thus allows to take large time 
steps.  
 
The accuracy and efficiency of these two methods, which 
are both combined with an adaptive time stepping 
strategy, are discussed on a Weibel instability test case. 
During the linear phase in which the nonlinear effects are 
small, the exponential method is able to consider large 
time steps whereas, in the nonlinear phase, the method 
automatically takes smaller time steps to ensure the 
nonlinear stability of the method.  
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