

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

N₂ fixation, CO₂ conversion, and CH₄ valorization in atmospheric pulsed

plasmas

Shuai Zhang¹, Xin Zeng^{1, 2}, Tao Shao^{1, 2,*}

¹ Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute

of Electrical Engineering, Chinese Academy of Sciences 100190, China, ² University of Chinese

Academy of Sciences, Beijing, 100049, China

e-mail (speaker):zhangshuai@mail.iee.ac.cn

Energy-efficient environmentally and benign alternatives for small molecules (N₂, CO₂ and CH₄) urgently needed, especially conversion are the electricity-driven processes using green-chemistry, renewable energy, to near the ultimate goal of zero carbon emissions. The paper introduces a potentially ground-breaking approach to use renewable energy in three major industrial reactions: 1) N₂ fixation, 2) CO₂ conversion and 3) CH₄ valorization, which have drastically lower carbon footprint (up to over 90% with respect to current ones). The high-energy electrons and/or gas fast-heating effect of low-temperature plasma will lower the reaction barrier and/or promote the reaction equilibrium under near ambient temperature and pressure.

1) N₂ fixation: The indirect approach involving plasma nitrogen oxidation (N₂ \rightarrow NO_x) in pulsed spark discharge¹ and further catalytic reduction to ammonia (NO_x \rightarrow NH₃) have been proposed to approach the zero-carbon target², with new insights emissions into free-radical-chain reactions by plasma kinetics modeling and optical diagnosis (as shown in figure 1). The approach to convert N₂/H₂O directly to NH₃ in pulsed plasma-catalytic reactor is also an alternative way for Haber–Bosch process³

 $\label{eq:Figure 1. Sustainable plasma-driven N_2 oxidation for NO_x formation by a nanosecond pulsed spark discharge$

2) CO_2 conversion: The dry reforming of CH_4 to syngas in atmospheric pulsed dielectric barrier discharge plasmas are optimized by pulse parameters (pulse rising time, width and frequency)⁴ and reactor structures (electrodes, controlled temperature and packing materials)⁵, as shown in figure 2. The methanation of CO_2 has also been implemented in atmospheric pulsed dielectric barrier discharge plasma coupling with structured catalyst and its reaction mechanism is speculated by a plasma kinetics model⁶.

Figure 2. The dry reforming of CH₄ to syngas in atmospheric pulsed DBD plasmas

3) CH₄ valorization: We acquire a potential result that the maximum CH₄ conversion of 90% and H₂ yield of 38% could be achieved by the microsecond pulsed spark discharge with a desirable energy efficiency of $44\%^7$, and the possible energy and chemical pathways are shown in figure 3. On the other hand, the dissociation CH₄ for H/CH₃ radicals by the pulsed dielectric barrier discharge plasma show the possibility for plasma-catalytic CH₄ directly to fine chemicals⁸.

Figure 3. The schematic diagram of possible energy and chemical pathways in pulsed CH₄ spark discharge

References

- S. Zhang, L. Zong, X. Zeng, et al. Green Chemistry, 24 (2022) 1534-1544
- 2.L. Li, C. Tang, X. Cui, et al. Angewandte Chemie -International Edition, 60 (2021) 14131-14137
- T. Zhang, R. Zhou, S. Zhang, et al. Energy & Environmental Materials, (2022). doi:10.1002/eem2.12344
- 4. X. Wang, Y. Gao, S. Zhang, et al. Applied Energy, 243 (2019) 132-144
- S. Zhang, Y. Gao, H. Sun, et al. High Voltage, (2022). doi: 10.1049/hve2.12201
- Y. Gao, L. Dou, S. Zhang, et al. Chemical Engineering Journal, 420 (2021).127693
- 7. Y. Gao, S. Zhang, H. Sun, et al. Applied Energy, 226 (2018) 534-545
- 8. X. Chen, S. Zhang, S. Li, et al. Sustainable Energy and Fuels, 5 (2021) 787-800

Note: Abstract should be in (full) double-columned one page.