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Nonlinear phase dynamics in a chirping wave 
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 In fusion devices, phase dynamics of particles 
interacting with waves plays a substantial role in the 
evolution of wave amplitude and frequency. In the 
problem of non-linear frequency chirping/sweeping 
waves, which occur frequently in fusion experiments, 
the motion of these particles is governed by a time 
dependent Hamiltonian (see Ref. [1]) where 
adiabatic conservation laws can be found provided 
that the system evolves slowly. During the evolution 
of the wave frequency, the existence of adiabatic 
invariants for trapped particles in the wave potential 
together with Liouville’s theorem imply the 
existence of nested co-centric layers of phase-space 
density i.e. level sets of the distribution function in 
phase-space, a stepped distribution profile. This 
enables using phase-space waterbags, a Lagrangian 
contour approach, to calculate the perturbed density 
of particles during chirping. In Refs. [2-7] and Refs. 
[8-10], the fast time-dependency of the Hamiltonian 
is canceled using a canonical transformation to a 
moving frame and subsequently the lowest order 
adiabatic invariant has been used. The former 
transfers the dynamics to a non-inertial frame where 
the lowest-order adiabatic invariant contains the 
terms corresponding to the fictitious force, while the 
latter considers a frame that only moves with the fast 
oscillatory component of the wave and hence the 
corresponding term appears to the next order 
correction. In this work, we investigate and compare 
the accuracy of the adiabatic invariants used in these 
models as a function of frequency chirping rate. We 
also develop a simulation model to evaluate the 
phase-space, shown in Fig.1, using the wave 
parameters reported in the theoretical water-bag 
model of Ref. [7] using phase-space waterbags.   
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Figure 1. Initial phase-space of energetic particles during 
the evolution of a chirping wave. The color bar denotes 
the phase-space density of fast particles discretized using 
layers of adiabatic invariants. Each level set of the 
phase-space density denotes a phase-space waterbag i.e. 
Lagrangian contour approach. The area inside the 
separatrix (black dashed line) shows co-centric layers of 
phase-space density.

 


