

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference Database analysis for RMP-driven ELM-crash-suppression experiments in KSTAR carbon wall

Minwoo Kim¹, W. H. Ko¹, S.-H. Hahn¹, G. W. Shin¹, S. K. Kim^{2,3}, S. M. Yang², J. Lee¹,

Y. M. Jeon¹, Y. In⁴, G. Y. Park¹, J.-W. Juhn¹, and J. H. Lee¹

¹ Korea Institute of Fusion Energy, ² Princeton Plasma Physics Laboratory,

³ Princeton University, ⁴ Ulsan National Institute of Science and Technology

e-mail (speaker): minwookim@kfe.re.kr

Applying external resonant magnetic perturbation (RMP) is one of the promising methods for a steady-state long-pulse operation by regulating heat and particle flux driven by edge-localized mode (ELM) crash if an H-mode is adopted as an operation scenario in a fusion reactor. During the KSTAR carbon-wall era to an end after the 2022 campaign, a number of RMP-driven ELM-crash-control experiments have been conducted since the ELM crash suppression was realized in 2011 first [1]. A database for the RMP experiments is constructed for systematic and statistical analysis related to ELM-crash-suppression conditions.

Figure 1. Pedestal profile analysis results: (a) Electron temperature (T_e) versus electron density (n_e), and (b) toroidal plasma rotation speed (V_{tor}) versus RMP current (I_{RMP}) [2]. T_e , n_e , and V_{tor} are from T_e pedestal top.

This presentation provides an updated dataset based on the previous analysis in Ref. [2]. The pedestal profiles are analyzed for discharges in a static $n = 1, 90^{\circ}$ phasing RMP configuration. The profile analysis provides pedestal parameter ranges where the accessibility to the ELM crash suppression is confirmed in the KSTAR RMP experiments: $n_{\rm c}$ (electron density) < 1.5 x 10¹⁹ m⁻³, $V_{\rm tor}$ (toroidal rotation speed of carbon impurity) > 40 km/s, and $0.2 < v_{e}^{*}$ (normalized electron collisionality) < 1.1 at the pedestal top.

The database presents the plasma performance (represented by the normalized beta) during the suppression phase related to plasma and engineering parameters. β_N highly depends on total auxiliary heating power (P_{heat}) and RMP strength (I_{RMP}) rather than other

factors, such as plasma shape, line-averaged electron density, and plasma current; β_N has a positive (negative) correlation to P_{heat} (I_{RMP}). Based on β_N database analysis, it is investigated whether the ELM crash suppression is maintained in high β_N (> 2.4) conditions. The RMP onset right after the L-H transition using the machine learning (ML) based real-time classifier helps enhance β_N in the RMP phase due to relative high core T_i compared to conventional RMP application case [3]. The duration of $\beta_N > 2.4$ ELM crash suppression is ~1.1 s (maximum β_N ~ 2.46). Additionally, the edge-localized RMP (ERMP) [4] and adaptive I_{RMP} control algorithm [5] are applied to enhance β_N in the suppression phase further. Transiently, β_N reaches up to ~2.55 with the ELM crash suppression.

Figure 2. Normalized beta (β_N) in the ELM crash suppression phase versus total auxiliary heating power (a) and RMP current (b) in static n = 1 RMP configuration.

This work was supported by the Korean Ministry of Science and ICT under the KFE R&D Program of "KSTAR Experimental Collaboration and Fusion Plasma Research (KFE-EN2201-13)" through the Korea Institute of Fusion Energy (KFE).

References

- [1] Y. M. Jeon et al., Phys. Rev. Lett. 109, 035004 (2012)
- [2] M. Kim et al., Phys. Plasmas 27, 112501 (2020)
- [3] G. Shin *et al.*, Nucl. Fusion **62**, 026035 (2022)
- [4] S. M. Yang et al., Nucl. Fusion 60, 096023 (2020)
- [5] S. K. Kim et al., Nucl. Fusion 62, 026043 (2022)