

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

On the synergic approach toward experimental realization of interesting fundamental science through the laser plasma interaction

Tae Moon Jeong, Prokopis Hadjisolomou, Sergei V. Bulanov

Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic

e-mail (speaker): taemoon.jeong@eli-beams.eu

Over the last two decades, tremendous advances have been made in the femtosecond (fs) high-power laser development, experimental and theoretical studies in the relativistic laser-plasma interaction [1-3]. A next step to a higher power laser (ranging 10 - 100 PW) is under way [4] for the study on fundamental science including photonuclear physics [5], laboratory astrophysics [6], strong-field quantum electrodynamics (SF-QED) [7], and so on. Apparently, the field strength itself formed by such a high-power laser is not yet strong enough compared to the critical field strength ($\sim 1.3 \times 10^{16}$ V/cm) [8] for the quantum electrodynamics study. However, the secondary sources, energetic charged particles and high energy photons produced by the high-power laser, can plays a key role in the study of fundamental science through the quantum nonlinearity parameter [9].

Interesting ideas and schemes have been proposed in [5,10] and references therein to realize the experimental approach to the fundamental science via all optical approach. Among them is the γ -photon generation with a high conversion efficiency. According to recent theoretical research [11], the fs high-power laser can produce γ -photons with a very high conversion efficiency (~ 50%) from solid target material. The radioactive nuclei production and electron-positron pair production by irradiating γ -photons and following energetic particles to high-Z material has been discussed in [5]. In this presentation, we discuss the laser parameters for the efficient generation of γ -photons, spectral characteristics of the γ -photon with angular distribution. The high energy γ -photons generated collide another high-power laser

pulse for electron-positron pair production from vacuum through the multi-photon Breit-Wheeler process. The work was supported by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15 003/0000449) from the European Regional Development Fund.

References

[1] J. W. Yoon, et al., Optica 8, 630 (2021).

[2] A. J. Gonsalves, et al., Phys. Rev. Lett. 122, 084801

(2019); I J. Kim, et al., Phys. Plasma 23, 070701 (2016).

[3] G. A. Mourou, et al., Rev. Mod. Phys. 78, 309

(2006); E. Esarey, et al., Rev. Mod. Phys. 81, 1229 (2009).

[4] C. N. Danson, et al., High Power Laser Sci. Eng. 7, e54 (2019).

[5] D. Kolenatý, et al., Phys. Rev. Research 4, 023124 (2022).

[6] S. V. Bulanov, et al., Plasma Phys. Rep. 41, 1 (2015).

[7] A. DiPiazza, et al., Rev. Mod. Phys. 84, 1177 (2012);

A. Fedotov, et al., arXiv:2203.00019v1 (2022).

[8] J. Schwinger, Phys. Rev. 82, 664 (1951).

[9] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).

[10] T. M. Jeong, et al., Phys. Rev. A 104, 053533

(2021); B. King, et al., Phys. Rev. A 98, 023817 (2018); I. Drebot, et al., Phys. Rev Accel. Beams 20, 043402 (2017).

[11] P. Hadjisolomou, et al., arXiv:2204.03378v1 (2022);
P. Hadjisolomou, et al., J. Plasma Phys. 88, 905880104 (2022);
K. V. Lezhnin, et al., Phys. Plasmas 25, 123105, (2018);
T. Nakamura, et al., Phys. Rev. Lett. 108, 195001, (2012).

Figure 1. Intensity map of γ -photons from a solid target irradiated by a 80 PW single-cycle laser pulse in the λ^3 regime. RP: radially-polarized laser pulse, LP: linearly-polarized laser pulse, and AP: azimuthally-polarized laser pulse. Black arrows in the figure denote the laser propagation direction.