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The Lie transform perturbation theory of
Hamiltonian systems has been widely used in the
field of plasma physics, for example, for studying
the guided center motion of charged particles in
a magnetic field and developing the nonlinear gy-
rokinetic theory, etc. Nowadays, plasma simula-
tion has become an important tool, which leads
the Lie transform perturbation theory receive fur-
ther attention. This is because, unlike the standard
gyrokinetic theory, the Lie transform formulation
preserves Liouville’s theorem and the energy con-
servation law for time-independent systems. These
properties are especially important for long-period
simulations. Besides, the Lie transform is a near
identity transformation. It allows the expansion
generator to be determined in the order-by-order
analyses. Also, the backward transformation can
be obtained rather easily from the forward transfor-
mation. The developments are extensively reviewed
recently for example in Refs. [1] and [2], as well as
in the book in Ref. [3].

In this work, we show that the conventional Lie
transform perturbation theory needs to be modi-
fied when considering a system with a fast-varying
coordinate for ordering consistency [4,3]. For the
guiding center motion of a charged particle in a
magnetic field, the gyrophase is this type of coordi-
nates. This is related to the discrepancy of the re-
sults obtained by the direct expansion method and
the Lie transform formulation. The direct method
gives the Lagrangian to the first order as follows [2]

dΓ =
( e

mc
A+ ub

)
· dX +

mc

e
µdζ

−
(
u2

2
+ µB +

e

m
φ

)
dt, (1)

while the conventional Lie transform theory yields
in the same order [5,6]
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Here, u is parallel velocity, µ is magnetic moment,
X is the guiding center position, and ζ denotes the
gyrophase. Comparing Eqs. (1) and (2) one can see
that the gyromotion contribution “(mc/e)µdζ” is
missing in the Lie trnsform formulation, although
it is of the same order as the bounce motion contri-
bution “ub · dX”.

As shown in [4], two reasons cause this discrep-
ancy. First, the ordering difference between the
temporal variation of gyrophase and that of the
other phase space coordinates needs to be taken
into account. Second, it is also important to note
that the limit and derivative cannot be commuted
in general. When these facts are taken into account,
the near identity transformation rule for one form
related to the Lagrangian becomes
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Here, γµ and Γµ are the one form Lagrangians be-
fore and after the near-identity transformation, and
gν is the near-identity transformation generator.
The contribution of the second term on the right
is new. When coupled with the fast-varying coor-
dinate dζ, the second term on the right gives rise
to the otherwise missed term (mc/e)µdζ, which is
actually of the same order as that of the first term
and can only be obtained in the tedious higher-order
perturbation analyses in the conventional theory.
This resolves the discrepancy between the direct
and Lie transform treatments in the Lagrangian
perturbation theory for charged particle motion in
a magnetic field.

The correction to the near identity transforma-
tion rule pointed out in this work [4] affects gen-
erally the Lie transform framework in the classical
mechanics for the system with a fast-varying coor-
dinate. Especially, it modifies the derivation of the
nonlinear gyrokinetic equations, which will be ad-
dressed as well.
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