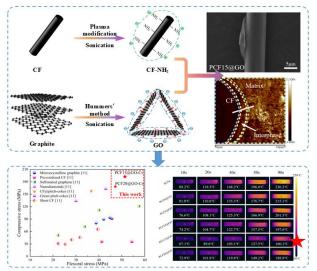
7th Asia-Pacific Conference on Plasma Physics, 12-17 Nov, 2023 at Port Messe Nagoya


Improving the interfacial properties for carbon-matrix composites by self-assembly of plasma-modified carbon fiber with graphene oxide

Wenfu Wei*, Li Jie, Yang Zefeng, Wu Guangning College of Electrical Engineering, Southwest Jiaotong University, China e-mail (speaker): wfwei@home.swjtu.edu.cn

Carbon fiber reinforced carbon matrix composites were widely used in military, aerospace and railway applications[1-3], but the poor interface between the fiber and the matrix severely limits further performance improvements.

Herein, a simple and efficient method was proposed to construct excellent interfaces between carbon fiber and matrix by plasma. Ammonia plasma-modified CF electrostatically self-assembled with graphene oxide (GO) in solution to form the new enhanced phase PCF@GO.

The results showed that GO coated on CF increased the tensile strength of CF by 12.3%, owing to the etching effect of the plasma eliminating fiber surface defects and providing repair sites for GO. Compared with the pristine material, the compressive strength (192.44 \pm 1.82 MPa) and flexural strength (51.34 \pm 0.39 MPa) of PCF15@GO reinforced carbon-matrix composites increased by 142.37% and 125.18%, respectively. This was mainly attributed to the ideal interfacial bonding and gradient interphase formed by PCF@GO with the pitch matrix, which could transfer the load from the matrix to CF. Meanwhile, the composite could keep a low temperature under current loading due to the good interface which reduced the electrical resistivity and increase the thermal conductivity of the composites. A strategy for the preparation of advanced composites with high mechanical strength and low working temperature is provided.

Figur. Graphic abstract for plasmas-treatment based performance improvement for the carbon composites

References

- [1] Wei Wenfu, Li Xiaobo, Yang Zefeng, et al., Highly conductive graphite matrix/copper composites by a pressureless infiltration method. Journal of Applied Physics, 2021. 130(1): 015102.
- [2] Yang Zefeng, Xu Pan, Wei Wenfu, et al., Influence of the Crosswind on the Pantograph Arcing Dynamics. IEEE Transactions on Plasma Science, 2020
- [3] Wei Wenfu, Li XB, Yang Zefeng, et al., Infiltration behavior of copper melt into porous graphite and saturation improvement by WC particles doping. Composite Interfaces, 2021.