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Cold atmospheric plasma (CAP) is a low-temperature 

plasma exposed to open air without thermal equilibrium, 

and it is currently widely used for plasma-based 

biomedical applications, relying on a unique chemical 

system [1]. Based on the air species such as N2, O2, and 

H2O, CAP can synthesize the reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) including O, 

OH, HO2, and NxOy [1]. ROS can lead to cell cycle 

arrest and apoptosis for cancer therapy, while NO and 

other reactive species can assist tissue regeneration, and 

the ozone and UV generated by CAP can deactivate 

microorganisms for sterilization [2]. However, the 

plasma chemistry in the open air is thus too complicated 

to be manually controlled [3]. There are more than 100 

chemical species with 1000 chemical reactions occurring 

at the same time [4]. Each reaction has a unique and 

highly dynamic rate coefficient. Meanwhile, there are 

many different types of CAP generators such as plasma 

jet and dielectric barrier discharge (DBD). Each 

generator can also work at different hardware setups 

such as discharge voltage, discharge frequency, gas flow 

rate, etc. Any one of those hardware setup and control 

parameters can change the entire chemical system, 

including all the species concentrations.  

 

Therefore, it is urgent to investigate and understand the 

complicated relationship between the control inputs and 

the complete concentrations of CAP chemistry. Several 

experimental diagnostics have been well-developed and 

widely used, such as laser-induced fluorescence (LIF), 

optical emission spectroscopy (OES), mass spectroscopy 

(MS), etc. However, these measurement methods have 

limits. For example, LIF relies on the specific species’ 

energy levels and thus it can only give access to 

OH-related species. OES, however, merely provides the 

excited species information and indirectly provides other 

information such as the electron temperature by 

assuming a simplified chemical kinetic scheme. MS can 

measure a relatively full picture of the species spectrum, 

but it is not sensitive to low-concentration species, such 

as those at about 1 ppm and lower. 

 

Numerical simulations, on the other hand, can overcome 

these experimental difficulties. One needs a temporal 

resolution at sub-nanosecond to ensure an accurate 

simulation of both the chemistry and the dynamic 

discharge process, such as the streamer propagation of 

CAP jets. However, the actual biomedical applications 

usually require CAP chemistry applied to targeting cells 

and tissues for several minutes. On the other hand, the 

spatial resolution of the simulation is usually set at a 

sub-micrometer scale while the actual hardware is at a 

centimeter scale with a dynamic CAP gas flow field. 

Therefore, this is a multi-scale problem for both time and 

space, which is challenging to simulate. 

 

In this work, a machine learning (ML) assisted method is 

developed to solve such a problem. Physics-informed 

data-driven modeling is a mapping between the two 

mathematical spaces: the space of control parameters of 

the plasma generator and the space of chemical species 

compositions in the plasma. Fourier-transform infrared 

spectroscopy (FTIR) is used to measure the 

concentrations of NO, NO2, and N2O. Like LIF, FTIR 

can merely provide limited species concentrations. Along 

with other physical laws such as mass and charge 

conservations, this physical information will be the 

constraint to training a physics-informed neural network 

(PINN). The input of PINN is a randomly selected 

control parameter while the output of it will be the full 

picture of all species concentrations. They will then be 

sent to a 0D chemical simulation to verify if all the 

species are at a steady state. Any changes of them will be 

an error, while the violation of physics laws and 

experimental observations of NO, NO2, and N2O will 

also increase the error. The total error will be used in an 

evolutionary algorithm to update the weights of PINN 

and complete an iteration of the training loop. Finally, 

the total error will converge to an acceptable low value. 

This means that no matter what control parameters are 

input to the PINN, it can always provide the full picture 

of all the species concentrations at steady state, agree 

with the conservation laws, and agree with the 

experimental observations for those species available to 

measure. Such a multi-scale problem is thus solved. 
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