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Disruption prediction and mitigation is a crucial topic,
especially for future large-scale tokamaks, due to disruption’s
concomitant harmful effects on the devices. Recent progresses
have proved that deep neural network can accurately predict
the coming disruptions by learning from history experimental
data, which becomes a potential solution for the disruption
prediction in future devices [1, 2]. This technique routine has
also been proved in HL-2A tokamak, both in offline testing
and online experiment [3, 4, 5]. However, a key issue about
this technique routine is whether the deep learning model can
be developed on future devices, since these devices can only
tolerate a few disruptions and therefore can’t provide much
training data [6]. In this research, a predict-first neural
network (PFNN) is developed in HL-2A. Two predict-first
tasks are designed to embed physical knowledge into the
neural network. Ablation experiments show that the embedded
physical information significantly improve the algorithms’
performance, especially when the training data is limited.
The first predict-first task is to let the neural network

predict the evolution of electronic temperature (Te), electronic
density (Ne) and horizontal displacement (Dh) according to
the control target, control actuators and the plasma state. A
preparatory neural network based on encoder-decoder
framework [7] is trained on this task and three empirical
equations are hidden in the design of the neural network. After
the training, the neural network learns the three equations and
can accurately predict the evolution of Te, Ne and Dh, as
shown in figure 1. Then this preparatory neural network can
be used as a feature extractor in the disruption prediction
algorithm and use the three equations to promote the
performance of disruption prediction.
The second predict-first task is to mask part of the

experimental data and let the neural network restore them.
Another preparatory neural network based on masked

auto-encoder framework [8] is trained on this task. It can
realistically reconstruct the masked parts according to the
unmasked parts and the correlation between different input
signals. This preparatory neural network can also be used as a
feature extractor in the disruption prediction algorithm and
use the correlation between different input signals to promote
the performance of disruption prediction.
Ablation experiments show that the embedded physical

information significantly improves the algorithms’
performance. When the amount of training shots is limited to
1283 shots, the AUC (area under receiver-operator
characteristic curve) of PFNN is about 4% higher than the
ordinary one, as shown in figure 2. In general, PFNN, which
is pretrained by predict-first tasks to learn physical
information and then trained for disruption prediction in the
second step, performs much better on disruption prediction
when the amount of training data is limited. It can be a
potential solution for future tokamaks’ disruption prediction
problem.
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Figure 1. a), b) and c) are electron density, electron temperature
and horizontal displacement, respectively. On the left is the
comparison of algorithm inputs and target outputs, where an
obvious delay of ΔT can be observed. Here ΔT is 30ms for Ne
and Te, while it is 10ms for Dh. On the right is the comparison
of predicted parameters and target outputs, they are much closer
than the situation in the left subfigures.

Figure 2. Comperison between the receiver-operator
characteristic curves of baseline(red) and PFNN(blue)
algorithms. Obviously PFNN performs better than the
baseline algorithm, which is trained from scratch without
the embedded physical knowledge.


