Preliminary Heating \& Current Drive design on EHL-2 spherical torus

Xinchen JIANG ${ }^{1,2}$, Yuejiang SHI ${ }^{1,2}$, Bing LIU ${ }^{1,2}$, Di LUO ${ }^{1,2}$, Haojie MA ${ }^{1,2}$, Xueyun WANG ${ }^{1,2}$, Tiantian SUN 1,2, Hanyue ZHAO 1,2, Xiang GU ${ }^{1,2}$, Wenjun LIU ${ }^{1,2}$, Muzhi TAN ${ }^{1,2}$, Lei HAN 1,2, Shaodong SONG ${ }^{1,2}$, Qing ZHOU ${ }^{1,2}$, Yueng-Kay Martin PENG 1,2, Huasheng XIE ${ }^{1,2}$, Minsheng LIU ${ }^{1,2}$

${ }^{1}$ Hebei Key Laboratory of Compact Fusion, Langfang 065001, China
${ }^{2}$ ENN Science and Technology Development Co., Ltd., Langfang 065001, China

e-mail (speaker):jiangxinchen@enn.cn

In 2023, ENN introduced the spherical torus EHL-2, which is a next-generation large Mega-Ampere (MA) device. The main target of EHL-2 is to resolve the key physics issues of $\mathrm{p}-11 \mathrm{~B}$ fusion, including hot-ion mode with high ion temperature and non-inductive current drive with high density. The design parameters of EHL-2 is: Ti0 $>20 \mathrm{keV}, \mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}}>2, n_{e 0} \sim 1.3 \times 10^{20} \mathrm{~m}^{-3}, \mathrm{I}_{\mathrm{p}} \sim 3 \mathrm{MA}, B_{\mathrm{t}} \sim$ $3 \mathrm{~T}, \mathrm{R}=1.05 \mathrm{~m}$. Nevertheless, heating and current drive (H\&CD) system is one of the most important factors to achieve EHL-2's physics goals. To meet the requirements of the EHL-2 development roadmap, various auxiliary heating and current drive systems have been considered. The NBI heating system provides 15 MW of energy with a planned beam energy about 200 keV . The ECCD system operates at frequencies of $105 / 140 \mathrm{GHz}$ and delivers a power of 5 MW . The ICRH system has an output power of 10 MW , while the LHCD and HHFW systems contribute 2 MW of power each. In total, these systems have a combined power of 34 MW. The preliminary design of H\&CD system for EHL-2 will be presented in this report. The initial numerical simulation results for the general auxiliary heating and current drive methods (NNBI\&PNBI, ECCD, LHCD, ICRH\&FWCD) will also be presented.

Key words: heating and current drive; p-B; EHL-2; ST;

Figure1: NBI beam energy simulation.

Figure2: ECRH\&CD 105/140GHz simulation.

