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The theory of relativistic plasmas is useful to model 
high-energy astronomical objects. In this context, 
topological constraints built in the governing equations 
play an essential role in characterizing structures self- 
organized by plasmas. Among various invariants of ideal 
models, the circulation is one of the most fundamental 
quantities, being included in other invariants like the 
helicity. The conventional enstrophy in a two- 
dimensional (2D) flow is defined as 

∫ 𝑓 (𝜔
𝜌

)  𝜌 𝑑𝑥2

Σ(𝑡)
 (1) 

with a particle number density 𝜌, the scalar vorticity 𝜔, 
an arbitrary smooth function 𝑓 : ℝ → ℝ, and an arbitrary 
region Σ(𝑡) ⊂ ℝ2  that co-moves with the 2D fluid. 
Enstrophy (1) is known to be constant and to measure the 
number of vortex filaments penetrating the surface Σ(𝑡). 
  By introducing potential fields 𝜑, 𝜆1 , 𝜎1 , 𝜆2 , and 
𝜎2, the velocity field 𝑉  of a fluid can represented as 

𝑚𝑉 ∶= ∇𝜑 + 𝜆1∇𝜎1 + 𝜆2∇𝜎2. (2) 
This expression is called a Clebsch representation of 𝑉, 
and the potential fields above are called Clebsch 
parameters or Clebsch variables [1]. Mathematically, a 
general three-dimensional (3D) vector field 𝑉  can 
always be cast into the form of equation (2) [2]. The 
corresponding vorticity vector 𝜔 can be written as 

𝜔 = ∇𝜆1 × ∇𝜎1 + ∇𝜆2 × ∇𝜎2. (3) 
By invoking Clebsch variables, the conventional 
enstrophy in a 2D flow can be generalized to a 3D flow: 
for 𝑘 = 1, 2, 

�̃�𝑘(𝑡) ≔ ∫ 𝑓(𝜗𝑘) 𝜌 𝑑𝑥3

Ω(𝑡)
, 𝜗𝑘 ≔ 𝜔𝑘 ⋅ ∇𝜎3−𝑘

𝜌
(4) 

with 𝜔𝑘 ≔ ∇𝜆𝑘 × ∇𝜎𝑘 . The integration domain 
Ω(𝑡) ⊂ ℝ3 is an arbitrary region that co-moves with the 
3D fluid. Both �̃�1(𝑡) and �̃�2(𝑡) can be interpreted as 
topological charges of a 3D fluid element, which 
essentially measure circulation [3,4]. 
  Since relativistic effects impart space-time coupling 
into the metric, such invariants are no longer constant in 
a relativistic setting. In particular, the non-relativistic 
enstrophy is no longer conserved in a relativistic plasma, 
implying that the conservation of circulation is violated. 

In this work [5], we extend the (non-relativistic) 
enstrophy in a 3D flow to a Lorentz covariant form. To 
this end, we first derive relativistic fluid equations for the 
Clebsch parameters by using the principle of least action. 
We then show that the time evolution of the conventional 
enstrophy 𝑄𝑘(𝑡) is given by: 

𝑑
𝑑𝑡 𝑄𝑘(𝑡) = ∫ { 𝑓 ′(𝜗) 𝑐 𝐽(log 𝛾 , 𝜆𝑘, 𝜎𝑘, 𝜎3−𝑘)

Ω(𝑡)

                         −𝑓(𝜗) 𝑛 𝑢𝜇𝜕𝜇(log 𝛾) } 𝑑3𝑥 (5)
 

where 𝐽(𝜉0, 𝜉1, 𝜉2, 𝜉3)  is the Jacobian determinant. 
Here 𝑑𝑄𝑘/𝑑𝑡 is proportional to the derivative of log 𝛾, 
implying that 𝑄𝑘(𝑡) is not preserved in a relativistic 
setting. Finally, we derive a relativistic enstrophy 𝔔𝑘(𝑠) 
that is preserved by the relativistic fluid equations. An 
explanation of the geometric meaning carried by 𝔔𝑘(𝑠) 
is given in figure 1. We also discuss simple examples and 
show that highly symmetric flows may preserve both 
𝑄𝑘(𝑡) and 𝔔𝑘(𝑠) due to the vanishing of 𝑢𝜇𝜕𝜇(log 𝛾). 
  This work was supported by JSPS KAKENHI Grant 
No. 17H01177 and No. 23KJ0435. 
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Figure 1. A conceptual drawing of 𝑡-plane (left) and 
𝑠-plane (right) of the fluid flowing outward radially from 
the origin. The 𝑡-plane is a hyperplane in space-time at 
constant time 𝑡 and used for the integral domain of the 
semi-relativistic enstrophy 𝑄1(𝑡). On the other hand, the 
𝑠-plane is a curved hypersurface in space-time reflecting 
the intrinsic time 𝑠 of the fluid and used for the integral 
domain of the relativistic enstrophy 𝔔1(𝑠). In this figure, 
the fluid farther from the origin is faster, so more time 𝑡 
has passed on the outer side [5]. 
 

 

We choose to compare the two 3-forms x1 ! dr2 and iUn. The
linear space X3ðMÞ is four-dimensional, andx1 ! dr2 and iUn are not
necessarily parallel. In order to compare them, we use a coordinate
map on V(s). We hope that once the two 3-forms are pulled back, one
is a scalar multiple of the other as three-forms on a 3D submanifold. A
natural coordinate map on V(s) seems to be the diffeomorphism
TUðsÞ : V0 ! VðsÞ.

We must verify that the derivative by s of the pullback by TUðsÞ
and the Lie derivative LU are connected. For a scalar function
g 2 C1ðMÞ,

d
ds

TUðsÞ#g ¼
d
ds

g ! TUðsÞ ¼
@g
@xl

d
ds

TUðsÞ
! "l

¼ @g
@xl U

ljTUðsÞ ¼ iUdgjTUðsÞ

¼ LUgjTUðsÞ ¼ TUðsÞ#ðLUgÞ: (47)

Any k-form can be written as a linear sum of exterior derivatives of
scalar functions combined with wedge products. Since a pullback is
commutative with a wedge product, and both d

ds and LU satisfy the
Leibniz rule and are commutative with an exterior derivative, Eq. (47)
holds for general k-forms (not only for 0-forms)

d
ds

TUðsÞ#x ¼ TUðsÞ#ðLUxÞ; (48)

for any x 2 XkðMÞ. Based on this fact, the relativistic enstrophyQðsÞ
is defined as follows:

QðsÞ :¼ c%1
ð

V0

f ð#ÞTUðsÞ#ðiUnÞ; (49)

with a scalar function

# :¼ c
TUðsÞ#ðx1 ! dr2Þ
$ %#

TUðsÞ#ðiUnÞ
$ %# : (50)

Note that in the definition of #, TUðsÞ#ðx1 ! dr2Þ and TUðsÞ#ðiUnÞ
are three-forms on a three-dimensional manifold V0 & R3, which
become 0-forms if we let Hodge star # act on them. Since

LUðiUnÞ ¼ LUðx1 ! dr2Þ ¼ 0 (51)

can be derived from the time evolution of Clebsch parameters from
Eqs. (42a) and (42b),

d
ds

TUðsÞ#ðiUnÞ ¼
d
ds

TUðsÞ#ðx1 ! dr2Þ ¼ 0 (52)

can be obtained from Eq. (48). Therefore, the conservation law of the
relativistic enstrophyQðsÞ follows, that is,

d
ds

QðsÞ ¼ 0: (53)

The definition of QðsÞ in Eqs. (49) and (50) can be written sym-
bolically as follows:

QðsÞ :¼ c%1
ð

VðsÞ
f ð#Þ iUn; (54)

# :¼ c
x1 ! dr2

iUn
: (55)

This simple formalism would make it easier to understand the defini-
tion and to compare it with conventional enstrophy (22). However,
this is only symbolic and ill-defined, and the actual calculation is as
shown in Eqs. (49) and (50).

In the following, we will check the correspondence of the semi-
relativistic generalized enstrophy and the relativistic generalized ens-
trophy in the non-relativistic limit. This is one of the reasons for the
validity of the definition of the relativistic generalized enstrophy. It is
sufficient to verify that the semi-relativistic enstrophy is identical with

FIG. 1. A conceptual drawing of t-plane (left) and s-plane (right) of the fluid flowing outward radially from the origin. The t-plane is a hyperplane in space-time at constant time t
and used for the integral domain of the semi-relativistic enstrophy Q(t). On the other hand, the s-plane is a curved hypersurface in space-time reflecting the intrinsic time s of
the fluid and used for the integral domain of the relativistic enstrophyQðsÞ. In this figure, the fluid farther from the origin is faster, so more time t has passed on the outer side.
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