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In astrophysical systems, magnetized collisionless 
shocks are frequently observed [1]. In laboratory 
experiments, these shocks can be replicated on a smaller 
scale by using laser-driven piston plasmas in the 
presence of a magnetized background plasma [2,3]. An 
essential factor in these experiments is the angle (𝜃!) 
between the direction of shock propagation and the 
background magnetic field. This study is meant to help 
with experiments and will provide valuable information 
to design and understand those experiments better. 
 
To investigate shock formation and evolution, we 
conducted quasi-1D collisionless piston-driven shock 
simulations, varying the shock angle from 𝜃! = 90∘ to 
𝜃! = 30∘. The results demonstrate that, regardless of the 
angle considered, the spatial and temporal scales of 
shock formation are similar when measured using the 
perpendicular component of the magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Despite having different shock angles, Figure 1 reveals 
that the velocity distribution in all simulations appears 
similar when observed at the same distance and time, 
quantified in terms of 𝜌# = 𝑚$𝑣%/(𝑞$𝐵#)  and 𝜏# =
𝑚$/(𝑞$𝐵#) . Here, 𝑚$  denotes the ion mass, 𝑣% 
represents the piston speed, 𝑞$ is the ion charge, and 𝐵# 
corresponds to the magnetic field perpendicular to the 
shock propagation direction. 
 
The piston plasma accumulates magnetic flux per unit 
length, which is proportional to the average rigidity of 

the piston ions, expressed as &!'"
(!

= 𝜌#𝐵# . This 
magnetic flux is crucial for the shock formation process. 
It serves as a minimal requirement for bending and 
redirecting an excessive number of incoming upstream 
particles within the shock layer. 
 
The observed constancy of the perpendicular magnetic 
field can be easily explained. The time and distance 
required for shock formation are inversely proportional 
to sin 𝜃! . Consequently, at lower 𝜃! values, shock 
formation takes longer and covers a greater distance in 
absolute units. However, since 𝐵#  (perpendicular 
magnetic field component) remains dominant over 𝐵∥ 
(parallel magnetic field component), shock formation 
still evolves similarly when expressed in normalized 
units. 
 
At a later stage when shocks become stationary, we 
examine the extent of perpendicular heating and parallel 
heating. For all considered values of 𝜃! , the 
perpendicular heating exhibits similarity. In the case of 
𝜃! = 90∘, the parallel heating is negligible because the 
parallel temperature is extremely small compared to the 
perpendicular temperatures. This may imply that the 
absence of variation along the magnetic field suppresses 
the parallel heating. Conversely, for all other 𝜃! values, 
there is variation along the magnetic field in the 
downstream region, making parallel heating effective. 
Furthermore, this parallel heating is more pronounced for 
smaller 𝜃! values. 
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