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Motivation     The BBGKY hierarchy is the starting 
point for deriving the Vlasov equation with a collision 
operator.  With a large plasma parameter one justifies 
eliminating 2-point correlations in terms of the 1-point 
function. Numerically testing the validity of these 
assumptions is prohibitive. because of high dimensio-
nality, In this presentation, we will present a 1-D model 
composed of interacting aligned charged disks so as to 
address the validity of the Bogoliubov assumption in a 
computable model. A system of N classical particles 
obeys the Liouville equation for the distribution function 
(d.f.) in 6N-dimensional phase space 

              

with  the total force acting on the  particle. By 
integration over the variables of a subset of particles, the 
Liouville equation can be transformed into a chain of 
equations connecting the evolution of -particle d.f. 
with the -d.f. . By truncating this chain by 
neglecting terms of order  we obtain a closed system 
involving  and . Bogolyubov’s approach  
postulates that rapidly reaches an asymptotic form, 
uniquely determined by the instantaneous form  of .
In 3-D space the equation for the time evolution of 
is13-dimensional (one time plus the 12-dimensional two-
particle phase space).  In 1-D space the equation for  
(actually the two-foil d.f.) is 5-dimensional (time plus 4-
dimensional phase space).  However in 1-D the electric 
field generated by a charge foil does not decay with 
distance so that the two-foil interaction energy diverges 
at infinity. This makes it  unclear how to define a finite 
correlation length. A possible compromise is to introduce 
an interaction potential that behaves as  that of a 1-D foil 
at short distances and decays as the inverse of the 
distance at large distances. Any interaction potential of 
this type introduces by necessity a length scale not 
present in the Coulomb interaction. A possible  choice 
[1] is to consider ta system of aligned  charged disks 
where the characteristic length is the radius  of the disk.  
In this case the electrostatic interaction energy is finite 
both at zero and at infinite distance between disks.

Model  The interaction energy between two uniformly 
charged thin disks of radius  and charge  is given 
by [2]   , with t  and

                              
,  with  and  elliptic integrals 

and ,  for .
The spatial spectrum of  differs from that of the 
Coulomb potential at large wavelengths , where  
i t s F. T.   
while for , . The logarithmic 
term at small wave-numbers arises in 1-D from the  
dependence of the interaction potential at large distances.
Defining the densities  (disks per unit length)  
and the charge density  and 
taking ion disks immobile, the cold fluid equations,

, 

 ,

give the dispersion relation  
where . For the disk-
plasma waves become Langmuir waves with frequency 

. For  we find  (logarithmically corrected) 
``cold electron-disk sound'' waves of the form  

 ,  where  are constants 
and b . The phase velocity of 
Langmuir waves is smaller than  while for old sound 
waves we have . 
The disk screened potential at thermodynamic 
equilibrium exhibits an exponential-type behaviour for 
small  while it decreases as with for 
large . This tail originates from the logarithmic 
contribution to  in the limit of small .
The derivation of the Vlasov equation follows standard 
lines with the particle density as the independent variable  

 

with  ) s the d.f. of the  species.

Present conclusions  In order to model correlation  
effects  in a 3-D plasma  using a reduced dimensionality 
configuration, it may be convenient to define an effective  
interaction energy constructed so as to retain the physical 
effects that we deem must be included in order to obtain 
an informative model. A numerical project is under way 
in order to investigate the kinetic properties of this 1-D 
plasma model and to integrate numerically the equation 
for  with given initial conditions.
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