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We report on studies of mesoscopic dynamics in 
simple systems. The aim is to avoid the geometrical 
complexity and hidden assumptions of conventional 
large-scale ‘simulations’, and instead to examine 
dynamics in depth. We focus on two related, classic 
problems — namely staircase structure and evolution, 
and turbulence spreading. 
 
a) Staircase Resiliency 

Layered profile structures, or staircases, have been 
observed in many systems, including drift wave–zonal 
flow turbulence. Here, we explore the resiliency and 
evolution of staircases. The simplest type of staircase 
occurs in passive scalar convection in a vortex array, and 
is a consequence of the existence of two disparate time 
scales, characteristic of cellular over-turning and 
diffusion. Since transport thru cell boundaries is purely 
diffusive, steep concentration gradients form there, 
yielding a global concentration profile staircase. The 
mean field scalar transport coefficient for the system is 
the geometric mean of cellular diffusion and collisional 
diffusion [1]. This result has important implications for 
confinement near criticality, and also is related to the 
well-known Chalker–Coddington model [2] of the 
Quantum Hall Effect. Interestingly, no assumptions 
concerning “feedback loops”, “shear suppression”, etc. 
are a priori necessary. Of course, this model is quite 
idealized, so we are motivated to explore staircase 
resiliency to disorder in the presence of fluctuations, 
mixing, etc. Thus, the fixed cellular array is replaced by 
a fluctuating vortex array, the model for which was 
originally developed for a finite-temperature vortex 
crystal [3]. A series of numerical experiments at modest 
Reynolds number were performed. Results indicate: 

i) Scalar concentration mixing is inhomogeneous, 
and staircase profiles form. 

ii) Staircases persist and are resilient over a broad 
range of Reynolds number, though coarsening 
due to step condensations occurs. 

iii) Scalar concentration travels along streamlines 
in regions of strong shear. Hence, inter-cell 
barriers form first, while scalar concentration 
homogenizes in vortices later. An image of the 
scalar concentration field thus resembles a web, 
which gradually fills in. 

iv) Scattering by vortices reduces the speed of 
scalar concentration front propagation. These 
paths are those of least time. 

v) If flow velocity and collisional diffusion are 
held fixed, only cell geometric properties 
ultimately determine the mean field scalar 
diffusivity. The latter does not deviate 

significantly from the value for the fixed 
cellular array. This is a consequence of the fact 
that array fluctuations do not induce vortex 
boundary crossings. 

Extensions of this study to the case of an active 
scalar (2D MHD) are under study and will be reported. 
The implications of this basic study for confinement 
physics will be discussed. 
 
b) Turbulence Spreading 

The spreading and propagation of turbulence are 
widely discussed [4] in the context of fast transients, 
non-local transport, etc. Amazingly, little or no detailed 
basic studies of spreading and entrainment dynamics 
have been pursued in the context of relevant models. We 
examine the spreading of a turbulent patch resulting from 
a locally forced excitation in a 2D fluid with viscosity 
and drag. The forcing is a linear array of stirring, with 
variable bandwidth. Results indicate that: 

i) The turbulent patch expands at roughly constant 
velocity, so width ~ time. 

ii) Finite drag limits expansion, thus defining a 
finite stopping length. This length is the 
sought-after “depth of penetration into the 
stable region”. 

iii) Vortex dipoles form and contribute to spreading. 
Recall that a vortex dipole moves at constant 
velocity, and so is relevant to result (i). 

iv) Spreading dynamics are sensitive to the 
properties of the forcing — especially the 
bandwidth. 

 
Ongoing work is concerned with extension to 

systems with waves and zonal flows (i.e. Hasegawa–
Mima) and to 2D MHD. 2D MHD is of particular 
interest, so as to determine the spreading dynamics of 
(kinetic and magnetic) energy, mean square magnetic 
potential, etc. The effects of a weak magnetic field 
threading the system are examined. 
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