

7th Asia-Pacific Conference on Plasma Physics, 12-17 Nov, 2023 at Port Messe Nagoya

Improved understanding and performance of power exhaust of alternative divertor discharges on MAST Upgrade

<u>K. Verhaegh¹</u>, J.R. Harrison¹, B. Lipschultz², D. Moulton¹, N. Lonigro^{2,1}, N. Osborne^{3,1}, P. Ryan¹, T. Wijkamp^{4,5}, C. Theiler⁶, D. Brida⁷, C. Cowley^{2,1}, G. Derks^{5,4}, R. Doyle⁸, F. Federici⁹, S. Henderson¹, B. Kool^{5,4}, H. Reimerdes⁶, L. Xiang¹, N. Vianello¹⁰
 ¹United Kingdom Atomic Energy Authority, ²University of York, ³University of Liverpool, ⁴Eindhoven University of Technology, ⁵Dutch Institute for Fundamental Energy Research, ⁶Ecole Polytechnique Fédérale Lausanne, ⁷Max Planck Institute Garching, ⁸Dublin City University, ⁹Oak Ridge National Laboratory, ¹⁰Consorzio RFX e-mail (speaker): kevin.verhaegh@ukaea.uk

MAST Upgrade supports a range of Alternative Divertor Configurations (ADC), including a Super-X Divertor (SXD), in a strongly baffled divertor chamber. Our results show that the SXD ($B_t/B_{xpt} = 2.3$ (ratio of magnetic field at target to X-point)) exhibits numerous advantages over the Conventional Divertor (CD) ($B_t/B_{xpt} = 1.1$), including enhanced detachment access and reduced particle & heat fluxes through increased ion & power sinks. The SXD remains detached in beam-heated scenarios (up to $P_{NBI}=2.5$ MW) between 25-50% Greenwald fraction (n_{GW}), while the CD only detaches at 45% n_{GW} without extrinsic seeding. An intermediate strike point radius ($B_t/B_{xpt} = 1.7$) configuration, the Elongated Divertor (ED), retains many of the SXD benefits.

The MAST-U SXD and ED demonstrate a reduced detachment front location sensitivity during heating/ fueling perturbations and transients; whilst the conditions in the core and upstream of the detached region are identical between the SXD, ED and CD (Figure 1a,b,c). The downstream-end of the ionisation region (detachment front) remains at a constant poloidal distance from the X-point, independent of the magnetic geometry below the detachment front, according to both experiments (Figure 1 a,b) and simulations. Therefore, the enhanced power/particle exhaust capabilities of the longer legged baffled divertors (SXD & ED) are caused by the additional volume downstream of the detachment front up until the strike point. In this *detached region* (Figure 1a, b), plasma-molecular interactions involving molecular ions lead to Molecular Activated Recombination (MAR) ion sinks, enhancing particle removal capabilities [1]. Such molecular interactions have an unprecedented impact on the detachment physics in the strongly baffled MAST-U SXD [2,3] & ED (Figure 1a,b) and their treatment requires modifications to exhaust modelling [4].

Initial H-mode results show that the MAST-U SXD

and ED remains detached during the inter-ELM period. H-mode operation and a larger range of ADCs will be investigated in the upcoming experimental campaign (07/2023-) including studies on ELM power dissipation using novel ultrafast spectroscopy.

References

- [1] K. Verhaegh, et al. 2021, Nucl. Fusion 61 016014
 [2] K. Verhaegh, et al. 2023 Nucl. Fusion 63 016014
 [3] K. Verhaegh, et al. 2023 arXiv: 2304.09109
- [4] K. Verhaegh, et al. 2023 Nucl. Fusion 63 076015 SP CD SP ED SP SXD

Figure 1: Ion source & sink profiles in the divertor chamber as function of poloidal distance to the Xpoint for the SXD (a,d), ED (b,e) and CD (c,f) configurations at 35 % ngw. The detached region is shaded black (a,b) and the strike point (SP) position for the three configurations is highlighted (a,b,c)