

7th Asia-Pacific Conference on Plasma Physics, 12-17 Nov, 2023 at Port Messe Nagoya Evaluation of edge transport and core accumulation of tungsten for CFETR with EMC3-EIRENE and STRAHL

S.Y. Dai^a, B. Liu^a, X.D. Yang^b, V.S. Chan^c, R. Ding^b, H.M. Zhang^b, Y. Feng^d, and D.Z. Wang^a

 ^aKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
^bInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
^cDepartment of Engineering and Applied Physics, School of Physical Sciences, University of Science and

Technology of China, Hefei, Anhui 230031, China of China

^dMax-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany e-mail (speaker): daishuyu@dlut.edu.cn

The edge transport and core accumulation of tungsten (W) particles on CFETR have been studied by integrated modelling consisting of EMC3-EIRENE and STRAHL codes [1-2]. The edge transport and power dissipation of W particles are simulated by EMC3-EIRENE. An in-out asymmetry of W⁽¹⁻²⁸⁾⁺ ions density has been revealed in the in- and out-board divertor regions. This is mainly due to the stronger reversal flow velocity of W ions at the outboard divertor. The upward flow of W ions near the separatrix leads to a moderate W impurity leakage from the divertor on CFETR compared to the existing full W device ASDEX Upgrade due to the high plasma density near the CFETR divertor targets. Further, the density distribution and radiation loss of W ions in the core region are investigated by STRAHL code. The high charge-state $W^{(29-60)+}$ and $W^{(61-74)+}$ ions mainly reside in the regions of $\Psi_N = 0.20 \sim 0.98$ and 0.00~0.90 (Ψ_N is the normalized poloidal magnetic flux), respectively. The W induced energy dissipation in different regions is assessed according to both STRAHL and

EMC3-EIRENE simulations. Particularly, the impacts of the W core radiation on the operation regime are discussed according to the H-mode threshold scaling law proposed by Martin [Martin Y R et al 2008 J. Phys.: Conf. Ser. 123 012033] for the baseline plasma on CFETR. Further, parameter studies on the pinch velocity (v_{imp}) and diffusion coefficient (D_{imp}) have been performed to check their impacts on the operation regime of CFETR. A three-fold increase of v_{imp}/D_{imp} results in a higher W core energy loss, which can lead to the transition from H-mode back to L-mode.

Reference

- [1] S.Y. Dai, et al., Nuclear Fusion, 62,036019, (2022).
- [2] B. Liu, et al., Nuclear Fusion, 62,126040, (2022).