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 The magnetohydrodynamic (MHD) equations are 

widely used as the macroscopic fluid model for plasma 

and have been solved analytically and numerically for 

various applications. The MHD equations are originally 

derived from the two-fluid equations (for ions and 

electrons) by assuming quasi-neutrality and neglecting 

the Hall and electron-inertia effects. However, this MHD 

approximation is invalid when plasma density decreases 

to a certain level. The plasma-vacuum interface (i.e., the 

free boundary of plasma) is therefore difficult to treat in 

the standard MHD. For example, the phase speed of 

Alfvén wave diverges unphysically in the low-density 

limit. 

In fact, the Hall and electron-inertia effects are 

nonnegligible in the scales of ion and electron’s inertial 

lengths, respectively, and they are inversely proportional 

to the square root of density. While the dense plasma 

region is well described by MHD, such the two-fluid 

effects should be taken into account in the region where 

the density decays to zero (i.e., vacuum). For this reason, 

we are naturally led to study the extended MHD 

(XMHD) model [1], in which the Hall and 

electron-inertia terms are restored while quasi-neutrality 

is still assumed (by taking the light speed infinite). The 

collisional effects such as resistivity and viscosity are 

also taken into account in this study. The XMHD 

equations are, then, well-posed in both plasma and 

vacuum regions.  

 To demonstrate it numerically, we consider a cylindrical 

plasma column which has only one-dimensional radial 

distribution. An equilibrium solution (well-known as the 

Z pinch) may exist by imposing a constant electric field 

(𝐸𝑧0) along the axial (𝑧) direction. The corresponding 

XMHD equations in the cylindrical coordinates are 

reduced to a nonlinear ordinary differential equation. 

This order is increased by 2 due to the electron-inertia 

effect, indicating that it is a kind of singular perturbation 

for MHD. In this symmetric geometry, the Hall term 

becomes automatically zero and has no impact on the 

equilibrium solution. 

 Since the cylindrical plasma is pinched by 

electromagnetic force, the plasma region is surrounded 

by vacuum at the equilibrium state if the plasma beta is 

sufficiently low. The density profile ρ of the MHD 

solution is shown by the dashed line in Fig. 1. In XMHD, 

the density becomes exactly zero at a position 𝑟 = 𝑎 if 

adiabatic change is assumed with a specific heat ratio γ > 

1. The XMHD solution is not smooth at 𝑟 = 𝑎 and the 

finite difference scheme fails there. This singularity 

needs to be regularized appropriately in numerical 

analysis. The resultant XMHD solution is shown by the 

solid lines in Fig. 1, where the resistivity and kinematic 

viscosity are constant everywhere for simplicity. 

 The numerical solution indicates that there exists a 

“boundary layer” that connect the inner MHD solution 

and the outer vacuum magnetic field. Within the layer, a 

localized surface electric current is driven due to the 

electron-inertia effect. Although the collisional effect 

tends to attenuate this surface current, the constant 

resistivity is insufficient for that and, hence, electrons are 

accelerated within the low-density layer. Because of this 

boundary layer, the XMHD equilibrium solution does not 

converge to the MHD one in the limit of zero 

electric-inertia effect. In particular, the equilibrium 

position of the plasma-vacuum interface shifts inward 

depending on the magnitude of surface current. 

 In XMHD, we need to solve the relative velocity 𝒖 =
𝒗𝑖 − 𝒗𝑒 of ion and electron even in the vacuum region. 

Then, the kinematic viscosity and the no-slip boundary 

condition are necessary for well-posedness and 

numerical stability. In the MHD limit, the width 𝛿 of 

the boundary layer tends to zero, but the surface current 

remains finite. By considering matching conditions at 

plasma-vacuum interface, we can obtain its position 𝑟 =
𝑎 analytically, which depends on only the plasma beta. 
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Figure 1. Radial profile of a cylindrical equilibrium of 

XMHD under axial electric field (Z pinch). 
 

 


