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Significant acceleration of accurate radio-frequency
(RF) power absorption profile predictions in the ion
cyclotron range of frequencies (ICRF) was achieved
using machine learning (ML)-based algorithms. A
traditional approach for obtaining these predictions is to
use the spectral based full wave solver TORIC [1,2].
However, the considerable computational expenses of
these codes have impeded their application to real-time
control, inter-shot predictive modeling or specific
scenario optimization. The physics of ICRF heating
features complex power absorption phenomenology as
both electron and ion species are contributing [3]. As
each plasma-wave interaction yields a power deposition
with different shapes, the resultant RF absorption
profile presents a significant challenge for training
ML-algorithms. In this work we present the results of
our ICRF wave surrogate modeling efforts to obtain
accelerated predictions of the power absorption profiles
of WEST [4] and NSTX [5] without losing physics
fidelity. Two ML-methods are employed to develop the
surrogate models: the Random Forest Regressor (RFR)
[6] and the Multi-Layer Perceptron (MLP) [7]. The
models are trained using databases generated with
TORIC, which solves the wave equation in both
minority and high-harmonic fast wave (HHFW) heating
schemes, present in WEST and NSTX, respectively.
Over 104 cases are sampled in each machine-specific
parametric regime of interest via the Latin Hypercube
Sampling method [8], which produces a pseudo-random
sample optimally distributed over the multidimensional
input parameter space. The accuracy (scoring) achieved
by the surrogate models is measured in terms of average
mean squared error (MSE) and coefficient of
determination (R2). Best scorings achieved vary within

[~10-2,~10-5] MSE and [0.71-0.96], respectively. The
surrogates implemented for the 1D RF power
absorption of electrons and ion species (i.e. hydrogen
and deuterium ions) reduce the inference time from
O(~1-5min) to O(~30-50μs). While the MLP can
achieve better performances, its scoring is strongly
sensitive to the presence of outliers, which are found in
the TORIC generated database, and result in decreased
MLP scoring due to increased noise levels in the
predictions. Further discussion on the nature of these
outliers is provided. In the HHFW database, outlier
filtering provides a significant boost to surrogate
scoring, where, for instance, electron power predictions
can improve R2 from 0.62-0.70 to 0.95-0.96 and MSE
from 2.1-2.6⋅10-3 to 2.1-1.1⋅10-5 for RFR-MLP
respectively. Power absorption profile predictions of the
outlier cases with filtered-dataset trained RFR preserve
the main physical aspects of ICRF absorption while
eliminating outlier features (see Figure 1). Although
outliers are also present in the WEST database, its
origin is shown to be correlated to underresolved small
wavelength IBW modes in the high field side.
Application of principal component analysis allowed

to reduce the dimensionality of electron and hydrogen
power absorption profiles for WEST database, from 300
point profiles to uniquely 5 and 7 components,
respectively. Training MLP regressors on the projected
data resulted in boosting both electron and hydrogen
power predictions scoring from the R2=0.57-0.64
obtained using the original data to R2=0.85-0.85.
Finally, results of the application of both RFRs and

MLPs to predict 2D RF variables such as the power
deposition and the wave electric field will be discussed.

Figure 1: Prediction of electron power absorption profile for an
outlier case in the HHFW database
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