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Linear response function of turbulence and its time scale
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 Two-point  correlation  function,  such  as  the  energy 
spectrum and the Reynolds stress, is the central object in 
the turbulence research. We can write the equation of a 
two-point  correlation  function  by  using  the  governing 
equation,  for  example,  the  Navier-Stokes  equations. 
However  the  resultant  equation  involves  three-point 
correlation functions. In other words, it is not closed with 
the two-point correlation functions, known as the closure 
problem.  Therefore  we  need  to  model  higher  order 
correlation functions somehow in terms of the two-point 
correlation functions.
  One systematic method of such a modeling is arguably 
to use linear response function. For the closure problem 
on  the  energy  spectrum  of  homogeneous  isotropic 
turbulence (HIT), the linear response function was first 
used  by  Kraichnan  in  1950s  [1].  His  closure 
approximation,  called  direct  interaction  approximation 
(DIA), has opened up a number of new research avenues 
while  overcoming  its  initial  failure  in  predicting  the 
Kolmogorov   law  of  the  energy  spectrum  (  is 
wavenumber).  Our  first  focus  here  is  on  one  of  the 
avenues,  which  concerns  time  scales  of  the  two-point 
correlation  function  and,  in  particular,  of  the  linear 
response function and how they differ depending on the 
Eulerian or Lagrangian coordinates. Our second focus is 
an exact formula of the linear response function, which 
can  be  obtained  with  a  recent  technique  of  non-
equilibrium statistical mechanics [2].
  Regarding the first focus, we perform a direct numerical 
simulation (DNS) of HIT of a neutral fluid with a forcing 
in a periodic cube using the spectral  method. We then 
calculate  the  temporal  correlation  functions  of  the 
Fourier  coefficients  of  the  velocity  and  the  linear 
response function of the same Fourier coefficients. We do 
this both in the Eulerian and Lagrangian coordinates (for 
the latter we use so-called Lagrangian history velocity). 
We find in the inertial range that their time scales in the 
Eulerian coordinates are proportional to  and that the 
time  scales  in  the  Lagrangian  coordinates  are 
proportional  to   in  agreement  with  the   classical 
predictions. See Fig.1 for the measured time scale of the 
linear response function as a function of the wavenumber 
in both the Eulerian and Lagrangian cases.
  Regarding the second focus,  we adapt the theory for 
nonlinear Langevin equations in [2] to HIT by adding a 
Gaussian  random  noise  term  to  the  Navier-Stokes 

equation in  the Fourier  space in  addition to  the large-
scale forcing. We obtain an exact formula of the linear 
response  function  of  the  Fourier  coefficients  of  the 
velocity in the Eulerian coordinates. It involves two-point 
and three-point correlation functions and the amplitude 
of  the  Gaussian  noise.  We  show  that,  for  sufficiently 
small noise, the formula agrees with the linear response 
function without the noise. Also the formula shed some 
light  on  the  discrepancy  between  the  two-point 
correlation  function  and  the  linear  response  function 
(breakdown of the fluctuation dissipation relation). 
 Further details of this presentation can be found in [3].

Figure 1.  Time scales of the linear response function as 
a  function  of  wavenumber  .   Here  the  time  scale  is 
defined  as  the  halving  time  of  the  linear  response 
function (the time at which the linear response function 
is equal to 0.5). Here  corresponds to the time scale 
of  the  linear  response  function of  the  velocity  Fourier 
coefficients in the Eulerian   coordinates. And  
corresponds  to  the  time  scale  of  the  linear  response 
function in the Lagrangian coordinates.
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