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  The rotation of plasma has been identified as a possible 
key factor in the heat and particle confinement properties 
in tokamaks. Numerous experimental observations have 
supported the existence of intrinsic plasma rotation in 
connection with the high-confinement mode [1]. One 
option to avoid instabilities could be to make plasma 
rotate to stabilize it. The understanding and control of 
plasma rotation are of utmost importance for achieving 
enhanced plasma performance and sustainable fusion 
reactions in tokamak devices. 

 The usual approach begins by using the axisymmetric 
Grad-Shafranov equation at zeroth order to reconstruct 
magnetic flux surfaces in real-time. In this context, any 
existing velocity field is considered to be primarily the 
result of “turbulence”, including its axisymmetric part. It 
means that in the usual approach there is no steady-state 
plasma velocity: an equilibrium plasma is a non-rotation 
plasma. 

 The present approach follows Montgomery's works [2]. 
To address this matter, we conduct numerical 
computations of the steady-state Navier-Stokes equation, 
which includes the non-linear (v·grad)v term [3, 4, 5]. To
obtain a closed system of partial differential equations we
solve it on the cross-section plasma domain Ω together 
with Maxwell equations, Ohm's law and boundary 
conditions [6, 7]. We numerically compute the 
axisymmetric steady states of the visco-resistive 
magnetohydrodynamic equations using the finite element 
method through the open-source platform FreeFem++ for
solving partial differential equations [8].

 By considering a visco-resistive magnetohydrodynamic 
model for a tokamak plasma with a given toroidal current
drive, we predict and numerically check a scaling law of 
the toroidal velocity as the function of the resistivity, η, 
and the Hartmann number H ≡ (ην)-1/2. 

This scaling law is {vφ}rms ≃ ηf(H) for some function f 
and should be valid as long as the inertial term remains 
negligible. Then, we reconsider this in light of the 
possible anisotropy of plasma resistivity and argue that 
the perpendicular resistivity can be retained in this 
scaling.
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