

<u>P. Vincenzi</u>¹, E. R. Solano², E. Delabie³, C. Bourdelle⁴, G. Snoep⁵, G. Birkenmeier^{6,7}, M. Cavedon⁷, J. Citrin⁵, J.C. Hillesheim⁸, A. Huber⁹, S. Menmuir⁸, JET L-H transition team* and JET Contributors**

¹Consorzio RFX, Padova, Italy; ²Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain; ³Oak Ridge National Laboratory, Oak Ridge, TN, United States of America; ⁴CEA, IRFM, Saint Paul Lez Durance, France; ⁵FOM Institute DIFFER, Eindhoven, Netherlands; ⁶Physik-Department E28, Technische Universität München, Garching, Germany; ⁷Max-Planck-Institut für Plasmaphysik, Garching, Germany; ⁸CCFE, Culham Science Centre, Abingdon, Oxon, United Kingdom of Great Britain and Northern Ireland; ⁹Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Plasmaphysik, Jülich, Germany; * See Appendix A at the end of E. R. Solano et al., "*L-H transition studies at JET: tritium, helium and deuterium.*", to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021); **See the author list of J. Mailloux et al., "*Overview of JET results for optimising ITER operation*", to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021); **See the author list of J. Mailloux et al., "*Overview of JET results for optimising ITER operation*", to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021); **See the author list of J. Mailloux et al., "*Overview of JET results for optimising ITER operation*", to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

e-mail (speaker): pietro.vincenzi@igi.cnr.it

The understanding of the physics governing the transition from L- to H-mode confinement regimes is essential to optimize ITER operations with different gases and to design DEMO plasma scenarios. From the installation of the ITER-like wall in JET, several experimental campaigns investigated the physics of L-H transition, with Helium and different hydrogen isotope plasmas. We present here an overview with the most recent results of JET L-H transition studies, with relevant impact on ITER operation. ITER foresees a preliminary phase, called Pre-Fusion Operating Power phase, at reduced toroidal field with either H or He main gas, to study ELMy H-mode plasmas without neutron production. The prediction of L-H power threshold is critical for this first phase. JET He plasmas show that the density at which the power to access the H-mode is minimum (nemin) is significantly higher than H and D cases, in contrast to ASDEX-Upgrade findings of similar ne.min values for H, D and He plasmas [1]. Regarding the isotope effect on the L-H transition, recently, JET RF-heated Tritium shots showed that the power threshold in RF-heated Tritium plasmas is not necessarily lower than in Deuterium, in contrast to what was found previously with JET C-wall. NBI Tritium pulses expected later in the current campaign will hopefully help to further understand this unexpected isotope effect. Deuterium plasmas have been further investigated, characterizing the

pre-transition phase and carrying out a detailed power balance analysis. The effect of plasma shape on the power threshold is confirmed from the last JET campaigns, and a new scaling law for JET D L-H transitions with explicit shape dependence has been proposed [2]. The non-linear behavior of P_{L-H} versus plasma density and the presence of $n_{e min}$ is shown to be captured for JET D NBI shots by a phenomenological model recently proposed [3], and it seems related to the occurrence of electron or ion heating at the transition. Lastly, the ion heat channel role in the transition has been investigated for JET NBI D discharges, showing that the ion heat flux is not monotonic in density [4], differently to RF-heated plasmas of ASDEX-Upgrade and Alcator C-mod [5].

[1] F. Ryter et al., Nucl. Fusion 53 (2013) 113003

[2] E. R. Solano et al., "L-H transition studies at JET: tritium, helium and deuterium.", 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

[3] R. Bilato et al., Nucl. Fusion 60 (2020) 124003 [4] P. Vincenzi et al., "Analysis of the edge ion heat flux at the L-H transition of JET-ILW NBIheated deuterium plasmas", submitted to Nuclear Fusion

[5] M. Schmidtmayr et al Nucl. Fusion 58 (2018) 056003