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Previous papers [1, 2] studied negative energy modes
of magnetorotational instability (MRI) [3, 4]. Non-
axisymmetric MRI can have negative energy. The
Frieman—Rotenberg equation [5] was used in the previ-
ous papers. In this paper, we present a four-field reduced
model of single helicity, incompressible magnetohydro-
dynamics (MHD) that can be used for the MRI analyses.

Let us consider a cylindrical plasma. Physical quan-
tities are assumed to have a single helicity as
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where f is an arbitrary variable, (r, 6, z) are the cylindri-
cal coordinates, ¢ := z/R, with 2 Ry being the length
of the plasma column, M and N are the principal poloidal
and toroidal mode numbers, respectively, and ¢ represents
their harmonics. By introducing o := M6/K + z with
K := N/Ry, the phase can be written as M+ N = Ka.
Then f depends on r, a and ¢ only.
Let us define an incompressible vector field as
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where 0 and  are unit vectors in the 6 and z directions,
respectively, and K3r? := M? + K?r? = 1/|h|?. Then
h-Vr = h-Va = 0. By using h, an incompressible
velocity field u and a magnetic field B are expressed as

u=h x Vo(r,a) + up(r, a)h, 3)
B = Vi(r,a) x h+ By(r,a)h. 4

Now, we can derive a four field model by taking the
components along h of the vorticity equation, the equa-
tion of motion, the Ohm’s law, and the induction equation
as follows:
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where
U:=Lp, )
J =L, (10)
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The linear MRI can be studied by linearizing
Egs. (5)—(8). As in the previous studies[1, 2], the plasma
is assumed to exist within an annular region between an
inner boundary r = r; and an outer boundary r = ro.
The perturbation of ¢ is assumed to vanish at r; and rs.
By assuming the time dependence of perturbed variables
as e~1@!, we obtain an eigenvalue problem. The equilib-
rium is given to have a homogeneous ambient magnetic
field in the z direction as By = Byz with a constant
By, and a plasma rotation velocity uy = rQ(r)8 where
Q(r) = Qur?/r? with a constant ;. Figure 1 shows the
real frequency of non-axisymmetric MRI with M = 1,
N = 1 and ¢ = 1, which successfully reproduced the
previous study.
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Figure 1: The real frequency of non-axisymmetric MRI
withM =1, N=1and/ =1.
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