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Previous papers [1, 2] studied negative energy modes
of magnetorotational instability (MRI) [3, 4]. Non-
axisymmetric MRI can have negative energy. The
Frieman–Rotenberg equation [5] was used in the previ-
ous papers. In this paper, we present a four-field reduced
model of single helicity, incompressible magnetohydro-
dynamics (MHD) that can be used for the MRI analyses.

Let us consider a cylindrical plasma. Physical quan-
tities are assumed to have a single helicity as

f(r, θ, z, t) =

∞∑
ℓ=−∞

fℓ(r, t)e
i ℓ(Mθ+Nζ), (1)

where f is an arbitrary variable, (r, θ, z) are the cylindri-
cal coordinates, ζ := z/R0 with 2πR0 being the length
of the plasma column,M andN are the principal poloidal
and toroidal mode numbers, respectively, and ℓ represents
their harmonics. By introducing α := Mθ/K + z with
K := N/R0, the phase can be written asMθ+N = Kα.
Then f depends on r, α and t only.

Let us define an incompressible vector field as

h :=
1

K2
0r

2
(−Krθ̂ +M ẑ), (2)

where θ̂ and ẑ are unit vectors in the θ and z directions,
respectively, and K2

0r
2 := M2 +K2r2 = 1/|h|2. Then

h · ∇r = h · ∇α = 0. By using h, an incompressible
velocity field u and a magnetic field B are expressed as

u = h×∇φ(r, α) + uh(r, α)h, (3)
B = ∇ψ(r, α)× h+Bh(r, α)h. (4)

Now, we can derive a four field model by taking the
components along h of the vorticity equation, the equa-
tion of motion, the Ohm’s law, and the induction equation
as follows:
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(5)
∂uh
∂t

= [uh, φ] + [Bh, ψ], (6)
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+
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where

U :=Lφ, (9)
J :=Lψ, (10)

L :=
1

Kr

∂

∂r

(
Kr

K2
0r
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∂

∂r

)
+

1

K2r2
∂2

∂α2
, (11)

[f, g] :=h · ∇f ×∇g. (12)

The linear MRI can be studied by linearizing
Eqs. (5)–(8). As in the previous studies[1, 2], the plasma
is assumed to exist within an annular region between an
inner boundary r = r1 and an outer boundary r = r2.
The perturbation of φ is assumed to vanish at r1 and r2.
By assuming the time dependence of perturbed variables
as e−iωt, we obtain an eigenvalue problem. The equilib-
rium is given to have a homogeneous ambient magnetic
field in the z direction as B0 = B0ẑ with a constant
B0, and a plasma rotation velocity u0 = rΩ(r)θ̂ where
Ω(r) = Ω1r

2
1/r

2 with a constant Ω1. Figure 1 shows the
real frequency of non-axisymmetric MRI with M = 1,
N = 1 and ℓ = 1, which successfully reproduced the
previous study.
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Figure 1: The real frequency of non-axisymmetric MRI
with M = 1, N = 1 and ℓ = 1.
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