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Surrogate models are becoming increasingly pivotal in 
contemporary physics, particularly in domains where 
numerical solutions are challenging due to the 
complexity of non-linear effects, such as fluid dynamics, 
plasma physics, and chaos theory [1]. These models 
alleviate computational burdens by capturing the 
relationships between inputs and outputs, often by 
simplifying the system through observational data. [2,3] 
Deep learning, in particular, has proven to be an effective 
tool for this purpose, demonstrating significant potential 
in learning high-dimensional non-linear effects, even 
though successful examples of its application to complex 
nonlinear functions are still relatively few. 
 
As a first step in developing fast and accurate surrogate 
models of turbulence transport, our objective is to utilize 
Physics-Informed Neural Networks (PINNs) to develop a 
forward solver for the Hasegawa-Wakatani (HW) 
equations [4]. By providing the model solely with the 
equations and the initial conditions in the linear stage, we 
aim to predict the turbulent electric field and plasma 
density. Reference data are produced by the direct 
numerical solver TOKAM2D, a 2D spectral code capable 
of simulating edge fluid turbulence including the HW 
equations. 
 
In this work, multiple new variants of PINN are tested, 
including Fourier embedding layer [2], Fourier special 
penalty, causal time stepping [5], etc. Although some of 
these methods boost convergence during training, they 

fail to capture the nonlinear evolution of turbulent 
vortices. Moreover, the performance of PINN degrades 
in fitting high-order derivatives. These results provide 
valuable clues to further improve learning the complex 
nonlinear dynamics.     
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