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High-energy astrophysics increasingly relies on 
understanding relativistic plasmas. Enstrophy, a key 
quantity characterizing the structure of plasma flow, can 
be generalized for relativistic scenarios [1]. This 
relativistic enstrophy considers the relativistic time 
dilation in the integration domain, called the 𝑠-plane. It 
is a curved hypersurface in space-time reflecting the 
intrinsic time 𝑠 of each fluid element (see figure 1b). An 
analogous construction applies to relativistic helicity [2]. 
 Introducing potentials 𝜑 , 𝜆1 , 𝜎1 , 𝜆2 , and 𝜎2 , the 
velocity field 𝑉  is represented as 

𝑚𝑉  = ∇𝜑 + 𝜆1∇𝜎1 + 𝜆2∇𝜎2. (1) 
This expression is called a Clebsch representation, and 
the potential fields above are called Clebsch potentials or 
Clebsch variables [3]. Mathematically, a general 
three-dimensional vector field can be cast into the form 
of equation (1) [4]. 
 
The problem with the relativistic enstrophy defined in 

[1] is that it is difficult to evaluate explicitly. This issue is 
severe for complex flows, which are more likely to 
violate conservation of conventional (non-relativistic) 
enstrophy. Indeed, in order to find the shape of the 
𝑠-plane, it is necessary to know how much proper time 
has elapsed for each fluid element, which means that all 
orbits (the trajectories that individual fluid particles 
follow) need to be obtained. The orbits can be obtained 
analytically only for highly symmetric flows, which 
allow for a significant simplification of the governing 
equations. On the other hand, for highly symmetric flows, 
it is known that relativistic effects do not appear in 
conventional enstrophy. Therefore, a practical 
formulation of relativistic enstrophy that can be 
evaluated even for complicated flows is desirable. 

 
 In this work, we formulate both relativistic helicity and 
relativistic enstrophy by pursuing a different approach, in 
which the domain of integration is not an 𝑠-plane but a 
𝑡-plane (see figure 1a). The relativistic helicity is defined 
for a three-dimensional fluid as 

∫ 𝒖 ⋅ 𝝎
Ω

 𝑑3𝑥, (2) 

where 𝒖 = 𝛾𝒗 denotes the spatial components of the 
four-velocity, 𝒗 = 𝑑𝒙/𝑑𝑡, 𝛾 is the Lorentz factor, and 
the relativistic vorticity is given by 𝝎 = ∇ × 𝒖. Here, 
Ω ⊂ ℝ3 is a time-independent domain. The relativistic 

enstrophy is defined for a two-dimensional fluid as 

 ∫  𝜔𝑧
2

2𝛾𝜚Σ
 𝑑2𝑥 (3) 

with 𝜚 the relativistic mass density and 𝜔𝑧 = 𝝎 ⋅ ∇𝑧. 
Here, integration is carried out over a time-invariant 
domain Σ ⊂ ℝ2.  
In our study, we also find that the relativistic helicity (2) 

and the relativistic enstrophy (3) occur as Casimir 
invariants of a relativistic noncanonical Hamiltonian 
theory. The Clebsch representation of the relativistic 
flow plays a critical role in the identification of such 
Hamiltonian structure. 
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Figure 1. A conceptual drawing of 𝑡-plane (left) and 
𝑠-plane (right) of the fluid flowing outward radially from 
the origin. The 𝑡-plane is a hyperplane in space-time at 
constant time 𝑡. On the other hand, the 𝑠-plane is a 
curved hypersurface in space-time reflecting the intrinsic 
time 𝑠 of the fluid. In this figure, the fluid farther from 
the origin is faster, so more time 𝑡 has passed on the 
outer side [1]. 
 

 

We choose to compare the two 3-forms x1 ! dr2 and iUn. The
linear space X3ðMÞ is four-dimensional, andx1 ! dr2 and iUn are not
necessarily parallel. In order to compare them, we use a coordinate
map on V(s). We hope that once the two 3-forms are pulled back, one
is a scalar multiple of the other as three-forms on a 3D submanifold. A
natural coordinate map on V(s) seems to be the diffeomorphism
TUðsÞ : V0 ! VðsÞ.

We must verify that the derivative by s of the pullback by TUðsÞ
and the Lie derivative LU are connected. For a scalar function
g 2 C1ðMÞ,

d
ds

TUðsÞ#g ¼
d
ds

g ! TUðsÞ ¼
@g
@xl

d
ds

TUðsÞ
! "l

¼ @g
@xl U

ljTUðsÞ ¼ iUdgjTUðsÞ

¼ LUgjTUðsÞ ¼ TUðsÞ#ðLUgÞ: (47)

Any k-form can be written as a linear sum of exterior derivatives of
scalar functions combined with wedge products. Since a pullback is
commutative with a wedge product, and both d

ds and LU satisfy the
Leibniz rule and are commutative with an exterior derivative, Eq. (47)
holds for general k-forms (not only for 0-forms)

d
ds

TUðsÞ#x ¼ TUðsÞ#ðLUxÞ; (48)

for any x 2 XkðMÞ. Based on this fact, the relativistic enstrophyQðsÞ
is defined as follows:

QðsÞ :¼ c%1
ð

V0

f ð#ÞTUðsÞ#ðiUnÞ; (49)

with a scalar function

# :¼ c
TUðsÞ#ðx1 ! dr2Þ
$ %#

TUðsÞ#ðiUnÞ
$ %# : (50)

Note that in the definition of #, TUðsÞ#ðx1 ! dr2Þ and TUðsÞ#ðiUnÞ
are three-forms on a three-dimensional manifold V0 & R3, which
become 0-forms if we let Hodge star # act on them. Since

LUðiUnÞ ¼ LUðx1 ! dr2Þ ¼ 0 (51)

can be derived from the time evolution of Clebsch parameters from
Eqs. (42a) and (42b),

d
ds

TUðsÞ#ðiUnÞ ¼
d
ds

TUðsÞ#ðx1 ! dr2Þ ¼ 0 (52)

can be obtained from Eq. (48). Therefore, the conservation law of the
relativistic enstrophyQðsÞ follows, that is,

d
ds

QðsÞ ¼ 0: (53)

The definition of QðsÞ in Eqs. (49) and (50) can be written sym-
bolically as follows:

QðsÞ :¼ c%1
ð

VðsÞ
f ð#Þ iUn; (54)

# :¼ c
x1 ! dr2

iUn
: (55)

This simple formalism would make it easier to understand the defini-
tion and to compare it with conventional enstrophy (22). However,
this is only symbolic and ill-defined, and the actual calculation is as
shown in Eqs. (49) and (50).

In the following, we will check the correspondence of the semi-
relativistic generalized enstrophy and the relativistic generalized ens-
trophy in the non-relativistic limit. This is one of the reasons for the
validity of the definition of the relativistic generalized enstrophy. It is
sufficient to verify that the semi-relativistic enstrophy is identical with

FIG. 1. A conceptual drawing of t-plane (left) and s-plane (right) of the fluid flowing outward radially from the origin. The t-plane is a hyperplane in space-time at constant time t
and used for the integral domain of the semi-relativistic enstrophy Q(t). On the other hand, the s-plane is a curved hypersurface in space-time reflecting the intrinsic time s of
the fluid and used for the integral domain of the relativistic enstrophyQðsÞ. In this figure, the fluid farther from the origin is faster, so more time t has passed on the outer side.
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