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Many asymptotic models describing the interaction of
light and matter are characterized by a self-consistent
(field dependent) nonlinear polarization and
magnetization. For example, a model relevant in plasma
physics is the ponderomotive force which, when
considered self-consistently, induces a reciprocal density
dependent index of refraction [1]. General models
describing the constitutive relations for Maxwell's
equations in self-consistently polarized and magnetized
media may be described by a single, elegant Hamiltonian
formalism [2]. This Hamiltonian formalism elucidates
the connection between the electromagnetic energy and
constitutive relations in nonlinearly polarized
electromagnetic media, and facilitates the building of
more complex models which couples nonlinear
electrodynamics with dynamical models for the medium.
This Hamiltonian modeling framework may be
leveraged to design energy-stable and Gauss-conserving
finite element methods to spatially discretize Maxwell's
equations in nonlinear media. This approach yields a
spatially semi-discretized system of ordinary differential
equations which are Hamiltonian and conserve discrete
analogs of Gauss’s laws. The key to exact conservation
of Gauss’s laws in the semi-discretized system is the use
of a spatial discretization which preserves the de Rham
cohomology. To accomplish this, one might use mimetic
finite differences or finite element exterior calculus
(FEEC). This work utilizes a FEEC method which uses
B-splines for interpolation [3]. As the spatially
semi-discrete system is Hamiltonian, it may be integrated
in time using the wealth of structure-preserving methods
for Hamiltonian ODEs (e.g. symplectic or energy
conserving methods). In particular, systems amenable to
Hamiltonian splitting methods yield a particularly
convenient time-integration scheme yielding a simple
and efficient structure-preserving fully-discrete scheme.
A useful model problem to test this numerical
method is Maxwell’s equations in cubicly nonlinear
media. Such models frequently appear in nonlinear
optics. The method used in this work is both
energy-stable, and Gauss-conserving, properties which
have not been present together in prior time-domain

solvers for nonlinear optics.

This work contributes a robust numerical
method for the Maxwell subsystem in complex models
coupling the electromagnetic field with matter. The
Hamiltonian modeling formalism accommodates a broad
class of nonlinear constitutive relations for Maxwell’s
equations, and the numerical method studied in this work
simulates such models while preserving the essential
features of the continuous model, i.e. energy
conservation and the conservation of Gauss’s laws.
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