## Dry reforming of methane using DBD plasma reactor coupled with Ni/La<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub>

Nor Aishah Saidina Amin<sup>1</sup> and Asif Khoja<sup>2</sup> <sup>1</sup>Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia <sup>2</sup>Department of Thermal Energy Engineering, (USPCAS-E), National University of Sciences & Technology (NUST), Pakistan Email: noraishah@cheme.utm.my

Carbon dioxide (CO<sub>2</sub>) could be utilized with methane (CH<sub>4</sub>) for the production of syngas through catalytic CO<sub>2</sub> reforming of CH<sub>4</sub> or dry reforming of methane (DRM)<sup>[1,2]</sup>. DRM offers a number of remarkable advantages such as mitigation of both greenhouse gases, and direct production of syngas. Ni/La<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> has been investigated for dry reforming of methane (DRM) in a cold plasma dielectric barrier discharge (DBD) fixed-bed reactor <sup>[3]</sup>. Ni/La<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> was prepared according to the modified coprecipitation assisted hydrothermal method.

The addition of La<sub>2</sub>O<sub>3</sub> as a co-support enhances the Ni–support interaction. The web-like structure of La<sub>2</sub>O<sub>3</sub> allows better Ni dispersion over the support as observed in the EDX mapping shown in Figure 1(a). Figure 1(b) illustrates the elemental mapping of Ni, La, Mg, Al and O of the Ni/La<sub>2</sub>O<sub>3</sub>.MgAl<sub>2</sub>O<sub>4</sub>. The catalytic DBD plasma reactor significantly improves the conversion of CH<sub>4</sub> and CO<sub>2</sub> to 86% and 84.5%, respectively. The selectivity for H<sub>2</sub> and CO is 50% and 49.5%, respectively. The syngas ratio (H<sub>2</sub>/CO) increases from 0.86 to 1.01, while the overall energy efficiency is 26% higher than that of plasma only DRM (Figure 2).

The enhanced DRM activity is ascribed to the higher basicity for Ni/La<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> at 0.9377 mmol/g compared to 0.8477 mmol/g for MgAl<sub>2</sub>O<sub>4</sub>. The dielectric properties of the Ni/La<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> is 18.3 compared to 12.0 and 8.8 for NiO and MgAl<sub>2</sub>O<sub>4</sub>, respectively. The formation of intermediate carbonate (La<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>) (Figure 2) inhibited carbon deposition as evident by TGA and EDX mapping. Furthermore, the catalyst is also successfully regenerated, and stable DRM performance is maintained during cyclic runs.



**Figure 1.** (a) EDX dot mapping of Ni/La<sub>2</sub>O<sub>3</sub>.MgAl<sub>2</sub>O<sub>4</sub> (b) EDX elemental analysis Ni/La<sub>2</sub>O<sub>3</sub>.MgAl<sub>2</sub>O<sub>4</sub>



Figure 2. Catalyst performance analysis: (a)  $C_2H_6$ selectivity (b)  $H_2$ /CO ratio (c) carbon balance  $C_B$  (d) energy efficiency (EE) mmol kJ<sup>-1</sup>; GHSV 364 h<sup>-1</sup>, SIE =300 J mL<sup>-1</sup>, catalyst loading = 0.5 g,  $D_{gap}$ =3 mm,  $D_L$ =20 cm,  $V_D$ = 9.75 cm<sup>3</sup>, T= 350 °C



Figure 3. (a) XRD pattern of the spent  $Ni/La_2O_3$ -MgAl<sub>2</sub>O<sub>4</sub> (b) TGA profile for spent catalyst after 15 h operation time (c-d) FESEM of the spent catalyst with different magnification

References

[1] Khoja, A.H *et al.*, Energy and Fuels **33**(11), pp. 11630-11647 (2019)

[2] Abbas et al., Fuel Proc Tech 248, 107836 (2023)
[3] Khoja, A.H. Phd Thesis Dry Reforming Of Methane Using Cold Plasma Reactor For Different Dielectric Materials And Modified MgAl<sub>2</sub>O<sub>4</sub> catalysts (2019)