

Toroidal flow & temperature measurements of neutral atoms in edge region of ADITYA-U Tokamak using Zeeman splitting

Ankit Kumar^{1,2}, N.Yadava³, M.B. Chowdhuri¹, Aman Gauttam¹, Dipexa Modi⁴, N. Ramaiya¹, Kaushlender Singh^{1,2}, Suman Dolui^{1,2}, Bharat Hedge^{1,2}, Ashok Kumawat^{1,2}, Utsav¹, Soumitra Banerjee^{1,2}, Injamul Hoque^{1,2}, Komal^{1,2}, Harshita Raj¹, Tanmay Macwan⁵, K. A. Jadeja¹, G. Shukla¹, K.Shah⁶, S.Patel⁴, Suman Aich¹, Pramila Gautam¹, M.Shah¹, Laxikanta Pradhan¹, Ankit Patel¹, K. M. Patel¹, A. Kanik⁷, Rohit Kumar¹, Kalpesh Galodiya¹, R. Manchanda¹, R.L. Tanna¹, Joydeep Ghosh^{1,2}

¹Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428

²Homi Bhabha National Institute (HBNI), Mumbai 400085

³Oak Ridge Associated Universities, USA

⁴Pandit Deendayal Petroleum University, Raisan, Gandhinagar 382007, Gujarat

⁵ Physics and Astronomy Department, PO Box 957099, Los Angeles, USA

⁶Princeton Plasma Physics Laboratory, Princeton University, New Jersey 08543, USA

⁷University of Petroleum & Energy Studies, Dehradun 248007, India

e-mail (speaker): Ankit1007kr@gmail.com / Ankit.kumar@ipr.res.in

Presence of hot neutral atoms and their toroidal flow plays a crucial role in understanding the edge region Physics in a tokamak, as it can affect the plasma rotation by changing the radial electric field in the edge region [1-4]. Measurement of toroidal flow velocity of neutrals (e.g. Hydrogen and Neon atoms) is performed using Doppler shift spectroscopy. 1m long Czerny-Turner configured multi-tract spectrometer (having a dispersion of 0.003nm/pixel), coupled with a fast sCMOS camera (with a time resolution of 20ms) is used to measure the Doppler shifts. Interestingly, due to the presence of high toroidal magnetic field ($B_T \sim 1T$) in a ADITYA-U tokamak, two Zeeman components (σ^+ and σ component) are observed while analysing the emission spectra (from Hydrogen and Neon atoms) coming along the magnetic field B_T. However, when the spectra is taken perpendicular to the magnetic field, all the three

Zeeman components (i.e. σ^+ , σ^- & π -components) are observed. In order to compare H_α emission, both in presence and absence of toroidal magnetic field in ADITYA-U plasma, the H_α emission is also monitored in the absence of toroidal magnetic field during the dc Glow Discharge Cleaning (GDC) plasma in ADITYA-U tokamak. This study becomes very useful in the precise estimation of temperature of the neutral atoms as well as their flow velocity in the edge region.

References:

- [1]. Ankit Kumar, et al 2024 Nucl. Fusion 64 086019
- [2]. J. Ghosh, et al., Phys. Plasmas 11, 3813 2004
- [3]. Yadava, N., et al., Atoms 2019, 7, 87
- [4]. Severo, et. al., 2015, Nucl. Fusion 55 093001.