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Disruption occurs when the plasma confinement is 
suddenly lost during tokamak discharges, resulting in a rapid 
release of thermal and electromagnetic energy onto the 
plasma-facing components. [1]. In future large-scale tokamaks, 
disruptions could pose a safety threat to the device [2].In the 
past decades, numerous algorithms have been developed using 
physical criterions and data-driven methods to predict the 
disruptions on many tokamaks and have achieved high 
accuracies [3]. However, most of the algorithms are developed 
and tested in stable data environments provided by devices 
that have been operating for a long time. There is still a lack 
of experience about the implementation on new tokamaks, 
with the consideration of limited and unstable data available 
on these devices. In this research, a deep learning-based 
disruption predictor is developed in a new tokamak, HL-3. A 
series of techniques are developed to overcome the obstacles 
introduced by the unstable data environment. Finally, an 
algorithm with an Area Under receiver-operator characteristic 
Curve (AUC) of 0.940 is realized. 

A comprehensive dataset is collected during the first several 
experimental campaigns of HL-3, ranging from Shot 1241 to 
Shot 4077. The dataset includes pre-disruption plasma 
parameters, disruption causes, operational strategies, and the 
harmful effects of disruptions. A systematic analysis of these 
data is conducted, providing valuable insights for the 
development of disruption prediction algorithms. The 
obstacles brought by the data environment of new device 
could be summarized into 3 aspects. Firstly, the amount of 
accumulated data is quite limited. Secondly, the plasma 
parameters in this new tokamak shift rapidly and could 
occasionally exceed the valid range of diagnostic, leading to 
frequent adjustments of the systems and breaks the 
availability and consistency of dataset. Last but not least, the 
distribution of disruption causes might frequently shift due to 
the adjustment of plasma parameters and operation strategies. 

The technical paradigm of disruption prediction is based on 
our previous research in HL-2A [4]. A series of novel modules 
are developed to address the mentions three issues. 

(1) Predict-first neural network (PFNN). The backbone of 
disruption prediction algorithm consists of 5 parts, as shown 
in figure 1. The left two parts are a surrogate model of offline 
EFIT and a physical feature extractor, which calculates some 
essential input features. The middle two parts are plasma 
current and shape (Ip & shape) predictor and plasma density 
predictor. They are two NN models trained to predict the 
evolution of plasma current, shape and density according to 
the previous status and control schedules. The predicted 
parameters will be used as supplementary inputs in the right 
part, namely, the disruption predictor. These new features aim 
to estimate if the plasma is under control and to introduce an 
inductive bias, i.e., uncontrollable plasma is more likely to 
disrupt, into the model.  

(2) Data augmentation. Since the evolution of plasma might 
vary in speed according to complex experimental factors 
without violating the intrinsic physics, the input of algorithm 

can be slightly scaled in or out on the time axis. This 
transformation generates new data to confine the NN and 
alleviates the problem of lacking data. 

(3) Pseudo data placeholder. Instead of simply inputting an 
array of diagnostic data into the algorithm, the HL-3 
disruption predictor supplements another array to input. The 
new array consists of Boolean flags for the validity of each 
channel. A Pseudo data array is generated in NN and will 
replace the original data if the channel is not valid in a certain 
shot. 

(4) Feature dropout. A more effective strategy is to actively 
adapt NN to missing input channels. Therefore, one can 
randomly select some of the diagnostics and set the validity 
flag as 0 in every training step. And NN will be expected to 
get used to missing input channels during training. 
Experimental result shows that intentional feature dropout can 
promote the accuracy of algorithm. 

(5) Cross channel reconstruction. Some diagnostics are 
under active commissioning among the training shots and are 
missing in almost half of the shots, yet they are quite 
important for disruption prediction. Therefore, a cross channel 
reconstruction model is developed, to fill in the missing 
diagnostics according to other existing related diagnostics. 

If all of the optimizations are removed, an ordinary deep 
learning model can only get an AUC of 0.741 in HL-3, 
proving the complexity of the data environment in this new 
tokamak. However, with the help of all the five optimizations, 
an AUC of 0.940 has been achieved, which demonstrates the 
feasibility of deep learning-based algorithms to accurately 
predict the disruptions in future fusion devices. 
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Fig.1. The overarching paradigm of disruption prediction 
algorithm in HL-3, encompassing 5 modules. 
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